Synthesis of TiO2 Nanoparticles Using Acinetobacter baumanii for Photocatalytic Application

2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zatil Amali Che Ramli ◽  
Nilofar Asim ◽  
Wan N. R. W. Isahak ◽  
Zeynab Emdadi ◽  
Norasikin Ahmad-Ludin ◽  
...  

This study involves the investigation of altering the photocatalytic activity of TiO2using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2(179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.


2021 ◽  
Author(s):  
Judith Chebwogen ◽  
Christopher Mkirema Maghanga

Population growth and urbanization have led to water scarcity and pollution, which is a health hazard not only to humans but also to the ecosystem in general. This has necessitated coming up with ways of treating water before consumption. Photocatalysis has proved to be one of the most promising cheap techniques that involve chemical utilization of solar energy. TiO2 widely used in photocatalysis absorbs a narrow range of the solar spectrum compared to ZnO. In this regard, this study aimed at preparing and optimizing cobalt-pigmented ZnO, which is applicable in photocatalytic water treatment. The objectives in this study were to fabricate zinc oxide (ZnO) thin films by anodization, pigment the fabricated films with varying cobalt concentrations, characterize the fabricated films optically, and investigate the cobalt-pigmented ZnO’s performance in the methylene blue degradation under UV light irradiation. Mirror-polished zinc plates were sonicated in ethanol and rinsed. Anodization was done at room temperature in 0.5 M oxalic acid at a constant voltage of 10 V for 60 min, and cobalt electrodeposited in the films. Post-deposition treatment was done at 250°C. Optical properties of the films were studied using a UV-VIS- NIR spectrophotometer in the solar range of 300–2500 nm. The photocatalytic activity of the fabricated films was studied in methylene blue solution degradation in the presence of UV light irradiation for 5 h. Cobalt pigmenting was observed to reduce reflectance and optical band gap from 3.34 to 3.10 eV indicating good photocatalytic properties. In this study, ZnO film pigmented with cobalt for 20 s was found to be the most photocatalytic with a rate constant of 0.0317 h−1 and hence had the optimum cobalt concentration for photocatalytic water treatment. This can be applied in small-scale water purification.


Author(s):  
Hassan Wafi Garba ◽  
Abubakar Garba Ashiru ◽  
Rooshan Watanpal ◽  
Mohammed Bello ◽  
Kasimu Abubakar ◽  
...  

Abstract—A novel copper(II) complex nanoparticles catalyst was synthesized via precipitation and calcination. The catalyst was applied for the degradation of methylene blue under UV light irradiation. The catalyst was characterized for its physicochemical and structural properties by XRD, SEM, TEM and FT-IR spectroscopic techniques. XRD studies revealed that the particles were monoclinic single phase crystalline structure, the morphology of the nanostructure was confirmed by SEM while the TEM studies revealed that the particles were FCC. FTIR spectra showed the presence of diverse vibrational functional groups. Photolysis of the methylene blue dye indicates no degradation after 1 hour reaction, while the addition of the copper(II) complex nanoparticles catalyst resulted in the decolouration of the dye by ~94%. The efficiency of the catalyst was attributed to the nanoparticle’s morphology.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. M. Mohamed ◽  
E. S. Aazam

CeO2-SiO2nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2without impurities and amorphous silica. The transmission electron microscopy (TEM) images revealed that the particle size of CeO2-SiO2nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.


2020 ◽  
Vol 52 (4) ◽  
pp. 415-432
Author(s):  
Faezeh Parast ◽  
Mehdi Montazeri-Pour ◽  
Masoud Rajabi ◽  
Fatemeh Bavarsiha

In the present research, Fe3O4/TiO2 magnetic photo-catalytic nanocomposites with a core/shell structure were successfully synthesized using two techniques of ultrasonic and St?ber. In this way, iron oxide (II, III) nanoparticles as soft magnetic cores of this composite were prepared by utilizing a chemical method assisted by ultrasound with a Fe+3/Fe+2 molar ratio of 1.5 under the nitrogen atmosphere. Thereafter, titanium oxide coating was performed on Fe3O4 nanoparticles by using tetrabutyl orthotitanate (TBOT) and titanium isopropoxide (TTIP) precursors. The resultant nanostructures were characterized by means of X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, energy dispersive X-ray (EDX) analysis, vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Through findings obtained from TEM examinations, the formation of core/shell nanostructure was confirmed in the prepared Fe3O4/TiO2 composites. Analysis of magnetic properties revealed that titanium oxide coating on iron oxide nanoparticles reduces saturation magnetization (Ms). The values of saturation magnetization for Fe3O4 powder and Fe3O4/TiO2 nanocomposite powders achieved via ultrasonic and St?ber methods were 60, 23 and 9 emu/g, respectively. Photo-catalytic properties of Fe3O4/TiO2 nanostructures were evaluated by the use of methylene blue dye under UV light. Results indicated that Fe3O4/TiO2 composite obtained by the St?ber method has a better photo-catalytic property as well as a decreased but acceptable magnetic separation. Degradation of methylene blue dye in the presence of photo-catalytic powder prepared by ultrasonic and St?ber procedures was 61 and 69 %, respectively, within 90 minutes of UV light exposure.


2010 ◽  
Vol 10 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Aarti Ameta ◽  
Indu Bhati ◽  
Rakshit Ameta ◽  
Suresh C. Ameta

The photocatalytic degradation of methylene blue dye under visible light has been investigated using chromium modified titanium dioxide supported on zeolite (Cr-TiO2/zeolite). The photocatalyst was prepared by sol-gel method and characterized by X-ray diffraction and SEM. The rate of photodegradation of dye was monitored spectrophotometrically. The effect of pH, dye concentration, amount of photocatalyst and intensity of light on the rate of photocatalytic reaction was observed. The results showed that the use of Cr-doped TiO2 increased the rate of photocatalytic degradation of methylene blue as compared to untreated TiO2. The photocatalytic mechanism of Cr-TiO2 catalyst has been tentatively discussed.   Keywords: Methylene blue, zeolite, chromium, photocatalytic degradation


Sign in / Sign up

Export Citation Format

Share Document