scholarly journals Analysis and research of digital signature algorithm Picnic

Radiotekhnika ◽  
2020 ◽  
pp. 19-24
Author(s):  
M.V. Yesina ◽  
B.S. Shahov

An important feature of the post-quantum period in cryptography is the significant uncertainty regarding the source data for cryptanalysis and counteraction in terms of the capabilities of quantum computers, their mathematical and software, as well as the application of quantum cryptanalysis to existing cryptotransformations and cryptoprotocols. Mathematical methods of digital signature (DS) have been chosen as the main methods of NIST USA, which have undergone significant analysis and substantiation in the process of extensive research by cryptographers and mathematicians at the highest level. They are described in detail and studied at the first stage of the US NIST International Competition. In the second round, a number of decisions were made to merge some candidates for the post-quantum DS standard. 9 candidates were left for further research at the 2nd round: Crystals-Dilithium, Falcon, GeMSS, LUOV, MQDSS, Picnic, qTESLA, Rainbow and SPHINCS+. Three of them (Dilithium, Falcon, qTeSLA) are based on the stability of algebraic lattices (Lattice-based), four (GeMSS, LUOV, MQDSS, Rainbow) are based on multivariate transformations (MQ-transformations), one (SPHINCS+) is based on the stability of hash-function, one (Picnic) is based on the stability of the hash-function and block stream ciphers. During the 2nd round of the US NIST Competition the following finalist algorithms and alternative algorithms were selected as digital signatures according to the results of research on promising post-quantum cryptographic algorithms. As finalists algorithms such DS algorithms as Crystals-Dilithium, Falcon and Rainbow. Alternative algorithms are GeMSS, Picnic and SPHINCS+ were selected. This paper studies the peculiarities of construction of the digital signature algorithm considered as a candidate for the promising post-quantum standard of the NIST PQC competition – Picnic, also it analyzes the protection of the algorithm from known attacks. Data from the comparison of post-quantum algorithms such as digital signature are given. The description of the Picnic algorithm and its parameters are given.

2018 ◽  
Vol 10 (3) ◽  
pp. 42-60 ◽  
Author(s):  
Sahar A. El-Rahman ◽  
Daniyah Aldawsari ◽  
Mona Aldosari ◽  
Omaimah Alrashed ◽  
Ghadeer Alsubaie

IoT (Internet of Things) is regarded as a diversified science and utilization with uncommon risks and opportunities of business. So, in this article, a digital signature mobile application (SignOn) is presented where, it provides a cloud based digital signature with a high security to sustain with the growth of IoT and the speed of the life. Different algorithms were utilized to accomplish the integrity of the documents, authenticate users with their unique signatures, and encrypt their documents in order to provide the best adopted solution for cloud-based signature in the field of IoT. Where, ECDSA (Elliptic Curve Digital Signature Algorithm) is utilized to ensure the message source, Hash function (SHA-512) is used to detect all information variations, and AES (Advanced Encryption Standard) is utilized for more security. SignOn is considered as a legal obligated way of signing contracts and documents, keeping the data in electronic form in a secure cloud environment and shortens the duration of the signing process. Whereas, it allows the user to sign electronic documents and then, the verifier can validate the produced signature.


Author(s):  
Muhammad Asghar Nazal ◽  
Reza Pulungan ◽  
Mardhani Riasetiawan

Data security is a very important compilation using cloud computing; one of the research that is running and using cloud technology as a means of storage is G-Connect. One of the developments made by the G-Connect project is about data security; most of the problems verification of the data sent. In previous studies, Keccak and RSA algorithms have implemented for data verification needs. But after a literature study of other algorithms that can make digital signatures, we found what is meant by an algorithm that is better than RSA in rectangular speeds, namely Digital Signature Algorithm (DSA).DSA is one of the key algorithms used for digital signatures, but because DSA still uses Secure Hash Algorithm (SHA-1) as an algorithm for hashes, DSA rarely used for data security purposes, so Keccak is used instead of the hash algorithm on DSA. Now, Keccak become the standard for the new SHA-3 hash function algorithm. Because of the above problems, the focus of this research is about data verification using Keccak and DSA. The results of the research are proven that Keccak can run on DSA work system, obtained a comparison of execution time process between DSA and RSA where both use Keccak.


Radiotekhnika ◽  
2021 ◽  
pp. 40-58
Author(s):  
M.V. Yesina ◽  
B.S. Shahov

Today, the question of the stability of modern existing cryptographic mechanisms to quantum algorithms of cryptanalysis in particular and quantum computers in general is quite acute. This issue is actively discussed at the international level. Therefore, to solve it, NIST USA has decided to organize and is currently holding a competition for candidates for post-quantum cryptographic algorithms NIST PQC. The result of the competition should be the adoption of various types of cryptographic algorithms for standardization, namely, asymmetric encryption, key encapsulation and electronic signature (at least one algorithm of each type). 82 algorithms were submitted by the start of the competition for the standardization process. Based on the minimum eligibility criteria defined by NIST, 69 algorithms were considered for the 1st round. Given several parameters, namely, security, cost, performance, implementation characteristics, etc., 43 and 11 algorithms were excluded at the end of the 1st and 2nd rounds, respectively, and the other 15 algorithms were left for participation in the 3rd round. The algorithms left in the 2nd round can be divided into 5 different categories depending on their mathematical basis: those based on the isogeny of elliptic curves, those based on algebraic lattices, those based on mathematical code, those based on multivariate transformations and those based on hash functions. Security is the main evaluation criterion that determines competition in the NIST competition, and it is clear that candidates' software implementations are focused mainly on it. However, it is extremely important that the algorithm has an effective hardware implementation. Timely identification of hardware inefficiencies will help focus the cryptographic community efforts on more promising candidates, potentially saving a large amount of time that can be spent on cryptanalysis. This paper discusses and compares the FPGAs of Xilinx family. Data on the implementation of the candidates of the 2nd round in the process of standardization of post-quantum cryptography NIST, which are focused on the FPGA of the Xilinx family, are presented and compared.


2019 ◽  
Vol 5 (2) ◽  
pp. 140
Author(s):  
Rachmad Fitriyanto ◽  
Anton Yudhana ◽  
Sunardi Sunardi

Management of jpeg/exif file fingerprint with Brute Force string matching algorithm and Hash Function SHA256Metode pengamanan berkas gambar jpeg/exif saat ini hanya mencakup aspek pencegahan, belum pada aspek deteksi integritas data. Digital Signature Algorithm (DSA) adalah metode kriptografi yang digunakan untuk memverifikasi integritas data menggunakan hash value. SHA256 merupakan hash function yang menghasilkan 256-bit hash value yang berfungsi sebagai file fingerprint. Penelitian ini bertujuan untuk menyusun file fingerprint dari berkas jpeg/exif menggunakan SHA256 dan algoritma Brute Force string matching untuk verifikasi integritas berkas jpeg/exif. Penelitian dilakukan dalam lima tahap. Tahap pertama adalah identifikasi struktur berkas jpeg/exif. Tahap kedua adalah akuisisi konten segmen. Tahap ketiga penghitungan hash value. Tahap keempat adalah eksperimen modifikasi berkas jpeg/exif. Tahap kelima adalah pemilihan elemen dan penyusunan file fingerprint. Hasil penelitian menunjukkan sebuah jpeg/exif file fingerprint tersusun atas tiga hash value. SOI (Start of Image) segment hash value digunakan untuk mendeteksi terjadinya modifikasi berkas dalam bentuk perubahan tipe berkas dan penambahan objek pada konten gambar. Hash value segmen APP1 digunakan untuk mendeteksi modifikasi pada metadata berkas. Hash value segmen SOF0 digunakan untuk mendeteksi gambar yang dimodifikasi dengan teknik recoloring, resizing, dan cropping. The method of securing jpeg/exif image files currently has covered only the prevention aspect instead of the data integrity detection aspect. Digital Signature Algorithm is a cryptographic method used to verify the data integrity using hash value. SHA256 is a hash function that produces a 256-bit hash value functioning as a fingerprint file. This study aimed at compiling fingerprint files from jpeg/exif files using SHA256 and Brute Force string matching algorithm to verify the integrity of jpeg/exif files. The research was conducted in five steps. The first step was identifying the jpeg/exif file structure. The second step was the acquisition of the segment content. The third step was calculating the hash value. The fourth step was the jpeg/exif file modification experiment. The fifth step was the selection of elements and compilation of fingerprint files. The obtained results showed a jpeg/exif fingerprint file which was compiled in three hash values. The hash value of SOI segment was used to detect the occurrence of file modification in the form of file type changing and object addition on the image content. The hash value of APP1 segment was used to detect the metadata file modification. The hash value of SOF0 segment was used to detect the images modified by recoloring, resizing, and cropping techniques.


2018 ◽  
Vol 5 (6) ◽  
pp. 180410 ◽  
Author(s):  
I. Stewart ◽  
D. Ilie ◽  
A. Zamyatin ◽  
S. Werner ◽  
M. F. Torshizi ◽  
...  

Quantum computers are expected to have a dramatic impact on numerous fields due to their anticipated ability to solve classes of mathematical problems much more efficiently than their classical counterparts. This particularly applies to domains involving integer factorization and discrete logarithms, such as public key cryptography. In this paper, we consider the threats a quantum-capable adversary could impose on Bitcoin, which currently uses the Elliptic Curve Digital Signature Algorithm (ECDSA) to sign transactions. We then propose a simple but slow commit–delay–reveal protocol, which allows users to securely move their funds from old (non-quantum-resistant) outputs to those adhering to a quantum-resistant digital signature scheme. The transition protocol functions even if ECDSA has already been compromised. While our scheme requires modifications to the Bitcoin protocol, these can be implemented as a soft fork.


Radiotekhnika ◽  
2021 ◽  
pp. 5-21
Author(s):  
I.D. Gorbenko ◽  
O.G. Kachko ◽  
O.V. Potii ◽  
A.M. Oleksiychuk ◽  
Yu.I. Gorbenko ◽  
...  

The paper considers post-quantum projects of the Falcon and Dilithium electronic signature standards (ES), which are finalists of the NIST USA competition. The mathematical apparatus of algebraic lattices and appropriate methods are used in their construction. In further study and comparison of these post-quantum ES draft standards, both from a theoretical and practical standpoint, it is fundamental to substantiate the requirements for parameters and keys and in general to calculate the main indicators according to the accepted conditional and unconditional criteria. In such studies, it is important to determine the sufficiency of ensuring the guarantee of their security against classical, quantum, special and error-based attacks. This can be ensured, inter alia, through a reasonable choice of the sizes of common parameters and keys, and their practical construction in accordance with the adopted security model. However, when choosing the sizes of common parameters and keys, a significant contradiction arises between the properties of the draft of the Falcon and Dilithium ES standards, So increasing the size of the general parameters and keys leads to an increase in the complexity of transformations, and vice versa. The purpose of this article consists in analysis of problematic issues of choosing the size of parameter and keys for post-quantum ES projects based on mathematical methods of Falcon and Dilithium, and features of their implementation, including implementation according to the adopted security model. Comparative analysis of the stability and complexity of the Falcon and Dilithium ES draft standards depending on the size of the parameters and keys, including for 6 and 7 security levels. Development of proposals for decisions on the adoption of national post-quantum ES standards based on the mathematical methods Falcon and Dilithium. Determining the influence of unconditional, conditional and pragmatic criteria on the advantages when deciding on the ES standardization based on Falcon and Dilithium mathematical methods, including taking into account the availability of patents and the need to obtain licenses, etc.


2020 ◽  
Vol 25 (3) ◽  
pp. 275-280
Author(s):  
Daniel Zentai

AbstractPost-quantum (or quantum-resistant) cryptography refers to a set of cryptographic algorithms that are thought to remain secure even in the world of quantum computers. These algorithms are usually considered to be inefficient because of their big keys, or their running time. However, if quantum computers became a reality, security professionals will not have any other choice, but to use these algorithms. Lamport signature is a hash based one-time digital signature algorithm that is thought to be quantum-resistant. In this paper we will describe some simulation results related to the efficiency of the Lamport signature.


CONVERTER ◽  
2021 ◽  
pp. 449-458
Author(s):  
Junwei Yang, Xiangkun Tong, Chenglian Liu, Sonia C-I Chen

Formal verification is to use mathematical methods to prove that our scheme is correct. This scheme is just a pronoun. It may be expressed as a hardware, a software or an algorithm. Errors in hardware are more difficult to modify than errors in software, so formal proofs and inspections often appear in the argument for hardware design. But, it does not mean that the software does not need to be formally verified. In addition to digital circuits or combinational circuits, cryptographic protocols also need to be formally verified. Formal proof can only ensure whether the result of logical inference is consistent with the previous stage, and can not guarantee whether there are defects in the process of logical inference. In this article the authors take as an example of Zhang-Wang's digital signature algorithm, and point out two formal proof methods of Boolean algebra and Galois field respectively.


Author(s):  
Daniel Kales ◽  
Greg Zaverucha

Picnic is a digital signature algorithm designed to provide security against attacks by quantum computers. The design uses only symmetric-key primitives, and is an efficient instantiation of the MPC-in-the-head paradigm. In this work, we explore the Picnic design in great detail. We investigate and benchmark different parameter choices and show that there exist better parameter choices than those in the current specification. We also present improvements to the MPC protocol that shorten signatures and reduce signing time. The proposed MPC changes tailor the protocol to the circuit of interest in Picnic, but may also be of independent interest. Taken together, these changes give a new instantiation of Picnic that signs messages 7.9 to 13.9 times faster, and verifies signatures 4.5 to 5.5 times faster than the existing “Picnic2” design, while having nearly the same signature sizes.


2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


Sign in / Sign up

Export Citation Format

Share Document