scholarly journals Architecture of network knowledge base of a complex military system

Radiotekhnika ◽  
2021 ◽  
pp. 80-92
Author(s):  
M. Yermoshyn ◽  
A. Poberezhnyi ◽  
O. Onopriyenko ◽  
M. Shuryha

The article examines the architecture of a networked knowledge base and the organizational structure of a complex military-purpose system, which is built when a group of troops (forces) is created and kept in a state where it is capable of solving the tasks assigned to it. This requires a deep study of issues not only of modern tactics regarding the preparation and conduct of hostilities, but also more complex issues of scientific substantiation of the architecture of a networked knowledge base and the structure of a complex military system with a networked knowledge base. The internal representation of knowledge in the knowledge base (formal programmatic and logical content) is advisable to implement in the form of an adjacency matrix, which displays the relationship and relationship between target settings; initial conditions; the resources of the grouping of troops (temporary, material, combat and quantitative composition), their costs and replenishment; rules for the use of resources and the choice of criteria for their distribution. The knowledge base synthesizes a mathematical network model for making decisions, which provides a change (correction) of the structure of target attitudes when replenishing the knowledge base. Tasks solved in the knowledge base: selection of vertices and relations when replenishing catalogs; making changes to the adjacency matrix in accordance with the identified or changed relationships between targets. A necessary element of the synthesis of a mathematical network model for making decisions on the preparation and conduct of hostilities is the construction of the structure of the target systems of the system for a specific situation. A feature of controlling the correctness of knowledge presented in the form of target attitudes is the need for a joint analysis of the entire set of target attitudes and initial conditions in their relationship. For this, the matrix of the relations of target attitudes and the matrix of the relations of initial conditions are combined. The control of the correctness of the knowledge base is carried out when replenishing the knowledge base, it includes: identification of contradictions in the structure of target attitudes when making changes to this structure; search and detection of contradictions in the graph of the semantic network according to available resources and time; checking the completeness of the graph of the mathematical network model; issuance of revealed contradictions to an expert and their elimination. A practical approach to building the architecture of a networked knowledge base and the organizational structure of a complex military system can be implemented during the substantiation of the components and elements of the system when creating a grouping of troops (forces).

2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


2021 ◽  
Author(s):  
Burak Erman

The coarse-grained Gaussian Network model, GNM, considers only the alpha carbons of the folded protein. Therefore it is not directly applicable to the study of mutation or ligand binding problems where atomic detail is required. This shortcoming is improved by including the local effect of heavy atoms in the neighborhood of each alpha carbon into the Kirchoff Adjacency Matrix. The presence of other atoms in the coordination shell of each alpha carbon diminishes the magnitude of fluctuations of that alpha carbon. But more importantly, it changes the graph-like connectivity structure, i.e., the Kirchoff Adjacency Matrix of the whole system which introduces amino acid specific and position specific information into the classical coarse-grained GNM which was originally modelled in analogy with phantom network theory of rubber elasticity. With this modification, it is now possible to make predictions on the effects of mutation and ligand binding on residue fluctuations and their pair-correlations. We refer to the new model as all-atom GNM. Using examples from published data we show that the all-atom GNM applied to in silico mutated proteins and to their laboratory mutated structures gives similar results. Thus, loss and gain of correlations, which may be related to loss and gain of function, may be studied by using simple in silico mutations only.


2007 ◽  
Vol 30 ◽  
pp. 181-212 ◽  
Author(s):  
S. P. Ponzetto ◽  
M. Strube

Wikipedia provides a semantic network for computing semantic relatedness in a more structured fashion than a search engine and with more coverage than WordNet. We present experiments on using Wikipedia for computing semantic relatedness and compare it to WordNet on various benchmarking datasets. Existing relatedness measures perform better using Wikipedia than a baseline given by Google counts, and we show that Wikipedia outperforms WordNet on some datasets. We also address the question whether and how Wikipedia can be integrated into NLP applications as a knowledge base. Including Wikipedia improves the performance of a machine learning based coreference resolution system, indicating that it represents a valuable resource for NLP applications. Finally, we show that our method can be easily used for languages other than English by computing semantic relatedness for a German dataset.


Author(s):  
Christopher Walton

In the introductory chapter of this book, we discussed the means by which knowledge can be made available on the Web. That is, the representation of the knowledge in a form by which it can be automatically processed by a computer. To recap, we identified two essential steps that were deemed necessary to achieve this task: 1. We discussed the need to agree on a suitable structure for the knowledge that we wish to represent. This is achieved through the construction of a semantic network, which defines the main concepts of the knowledge, and the relationships between these concepts. We presented an example network that contained the main concepts to differentiate between kinds of cameras. Our network is a conceptualization, or an abstract view of a small part of the world. A conceptualization is defined formally in an ontology, which is in essence a vocabulary for knowledge representation. 2. We discussed the construction of a knowledge base, which is a store of knowledge about a domain in machine-processable form; essentially a database of knowledge. A knowledge base is constructed through the classification of a body of information according to an ontology. The result will be a store of facts and rules that describe the domain. Our example described the classification of different camera features to form a knowledge base. The knowledge base is expressed formally in the language of the ontology over which it is defined. In this chapter we elaborate on these two steps to show how we can define ontologies and knowledge bases specifically for the Web. This will enable us to construct Semantic Web applications that make use of this knowledge. The chapter is devoted to a detailed explanation of the syntax and pragmatics of the RDF, RDFS, and OWL Semantic Web standards. The resource description framework (RDF) is an established standard for knowledge representation on the Web. Taken together with the associated RDF Schema (RDFS) standard, we have a language for representing simple ontologies and knowledge bases on the Web.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


Author(s):  
Jyoti Shetty ◽  
G. Sudhakara

A semigraph, defined as a generalization of graph by  Sampathkumar, allows an edge to have more than two vertices. The idea of multiple vertices on edges gives rise to multiplicity in every concept in the theory of graphs when generalized to semigraphs. In this paper, we define a representing matrix of a semigraph [Formula: see text] and call it binomial incidence matrix of the semigraph [Formula: see text]. This matrix, which becomes the well-known incidence matrix when the semigraph is a graph, represents the semigraph uniquely, up to isomorphism. We characterize this matrix and derive some results on the rank of the matrix. We also show that a matrix derived from the binomial incidence matrix satisfies a result in graph theory which relates incidence matrix of a graph and adjacency matrix of its line graph. We extend the concept of “twin vertices” in the theory of graphs to semigraph theory, and characterize them. Finally, we derive a systematic approach to show that the binomial incidence matrix of any semigraph on [Formula: see text] vertices can be obtained from the incidence matrix of the complete graph [Formula: see text].


1994 ◽  
Vol 04 (03) ◽  
pp. 639-674 ◽  
Author(s):  
A.L. ZHELEZNYAK ◽  
L.O. CHUA

Spatiotemporal dynamics of a one-dimensional cellular neural network (CNN) made of Chua’s circuits which mimics a reaction-diffusion medium is considered. An approach is presented to analyse the properties of this reaction-diffusion CNN through the characteristics of the attractors of an associated infinite-dimensional dynamical system with a matrix phase space. Using this approach, the spatiotemporal correlation dimension of the CNN’s spatiotemporal patterns is computed over various ranges of the diffusion coupling parameter, length of the chain, and initial conditions. It is shown that in a finite-dimensional projection of the matrix phase space of the CNN, both low- and high-dimensional attractors corresponding to different initial conditions coexist.


Sign in / Sign up

Export Citation Format

Share Document