Relationships between physiological traits and productivity of sugarcane in response to water deficit

2012 ◽  
Vol 152 (1) ◽  
pp. 104-118 ◽  
Author(s):  
M. DE A. SILVA ◽  
J. L. JIFON ◽  
J. A. G. DA SILVA ◽  
C. M. DOS SANTOS ◽  
V. SHARMA

SUMMARYThe relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.

2014 ◽  
Vol 9 (8) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Lauren M. Schwartz ◽  
Andrew J. Wood ◽  
David J. Gibson

Panicum virgatum is a dominant, native, perennial species found in the tallgrass prairie. In this study, we report the biosynthesis and accumulation of trigonelline (TRG) in leaves of P. virgatum in response to water-deficit stress. Once established, half of the seedlings underwent a drought stress treatment while the other half were watered daily (control). Relative water content (RWC) and trigonelline (TRG) concentrations were determined. RWC showed an interaction between moisture treatment and time, in which upland cultivars had the highest mean RWC compared with the lowland cultivars. The moisture treatments showed a significant difference in TRG concentration across all P. virgatum cultivars, which ranged from 0.5–31.8 μg/gFW−1. There was a divergence in TRG accumulation between upland and lowland cultivars in relation to RWC. This study is the first to report TRG accumulation in the grass P. virgatum, and to test for differences in TRG with respect to water-deficit stress among cultivars. The effect of soil moisture levels on cultivars may be important in making an informed selection and the response of P. virgatum and other dominant grasses should be considered as a potential filter in tallgrass prairies for restoration. Physiological markers such as TRG and RWC can aid in this decision making process.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 522 ◽  
Author(s):  
Alireza Pour-Aboughadareh ◽  
Mansoor Omidi ◽  
Mohammad Reza Naghavi ◽  
Alireza Etminan ◽  
Ali Ashraf Mehrabi ◽  
...  

Wild relatives of wheat serve as an extraordinary source of variability for breeding programs due to their capabilities to respond to various environmental stresses. Here, we investigated some species possessing a D genome (T. aestivum, Ae. tauschii, Ae. crassa and Ae. cylindrica) in terms of relative water content (RWC), stomatal conductance (Gs), relative chlorophyll content, initial fluorescence (Fo), maximum quantum yield of PSII (Fv/Fm), maximum primary yield of PSII photochemistry (Fv/Fo), as well as shoot fresh and dry biomasses under control and water deficit conditions. Our results revealed that water deficit negatively affected all traits; shoot fresh weight, Gs and RWC showed the highest reduction compared to the control condition. Principal component analysis (PCA) identified two PCs that accounted for 53.36% of the total variation in the water deficit conditions. Correlation analysis and PCA-based biplots showed that stress tolerance index (STI) is significantly associated with Fv/Fm and Fv/Fo under water stress conditions, suggesting that these are the best parameters to evaluate when screening for tolerant samples at the seedling stage. We identified 19 accessions from Ae. crassa and one from Ae. tauschii as the most tolerant samples. In conclusion, Ae. crassa might provide an ideal genetic resource for drought-tolerant wheat breeds.


Author(s):  
Asif Ali, Muhammad Zafar Iqbal, Muhammad Hayder Bin Khalid, Nazir Ahmad ◽  
Ameer Bibi

Brassica napus L. contains edible oil ensuring safe limits for human health. But farmers prefer to use their fertile land for main crops and only marginal lands for oilseed. Those marginal lands usually face water scarcity and other a-biotic stresses that affect the normal growth and development of plant. Here we tested three levels of water deficit stress (control, medium and high) under controlled conditions. Seedlings were analyzed for various seedling traits to measure the relative effect of different levels water deficit stress. Graphical trends depicts that increasing level of water deficit stress causes declines in leaf area, root length, shoot length, fresh and dry weight of roots and shoots. Correlation coefficients exposed positive significant correlation of fresh shoot weight with chlorophyll contents, relative water contents, leaf area and shoot length at both genotypic and phenotypic level. Path coefficient analysis displayed high direct effects on fresh shoot weight were due to relative water content, root to shoot ratio. Chlorophyll contents, relative water content, leaf area, root length and shoot length showed high broad sense heritability (h2BS) coupled with high genetic advance (GA). These traits could be focused while breeding for water deficit conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tengale Dipak Bhauso ◽  
Thankappan Radhakrishnan ◽  
Abhay Kumar ◽  
Gyan Prakash Mishra ◽  
Jentilal Ramjibhai Dobaria ◽  
...  

In the changing global environmental scenarios, water scarcity and recurrent drought impose huge reductions to the peanut (Arachis hypogaea L.) crop yield. In plants, osmotic adjustments associated with efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms. Mannitol, a compatible solute, is known to scavenge hydroxyl radicals generated during various abiotic stresses, thereby conferring tolerance to water-deficit stress in many plant species. However, peanut plant is not known to synthesize mannitol. Therefore, bacterial mtlD gene coding for mannitol 1-phosphate dehydrogenase under the control of constitutive promoter CaMV35S was introduced and overexpressed in the peanut cv. GG 20 using Agrobacterium tumefaciens-mediated transformation. A total of eight independent transgenic events were confirmed at molecular level by PCR, Southern blotting, and RT-PCR. Transgenic lines had increased amount of mannitol and exhibited enhanced tolerance in response to water-deficit stress. Improved performance of the mtlD transgenics was indicated by excised-leaf water loss assay and relative water content under water-deficit stress. Better performance of transgenics was due to the ability of the plants to synthesize mannitol. However, regulation of mtlD gene expression in transgenic plants remains to be elucidated.


2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Piyanan Pipatsitee ◽  
Cattarin Theerawitaya ◽  
Rujira Tiasarum ◽  
Thapanee Samphumphuang ◽  
Harminder Pal Singh ◽  
...  

Author(s):  
Rajkumar Dhakar ◽  
M. A. Sarath Chandran ◽  
Shivani Nagar ◽  
V. Visha Kumari ◽  
A. V. M. Subbarao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document