scholarly journals Penentuan Keputusan Pemberian Pinjaman Kredit Usaha Rakyat Menggunakan Metode Adaptive Neuro Fuzzy Inference System (Studi Kasus: BRI Unit A. Yani Bontang)

2020 ◽  
Vol 15 (2) ◽  
pp. 66
Author(s):  
Wahyu Dyan Permana ◽  
Indah Fitri Astuti ◽  
Heliza Rahmania Hatta

Kredit Usaha Rakyat (KUR) merupakan program pemerintah yang termasuk dalam kelompok program penanggulangan kemiskinan berbasis pemberdayaan usaha ekonomi mikro dan kecil. Bank Rakyat Indonesia (BRI) unit A.Yani Bontang merupakan salah satu bank penyedia pemberian modal KUR yang pada 1 tahun terakhir kredit macet sebesar 1.2 % dari total pinjaman yang didistribusikan. Sistem Pendukung Keputusan (SPK) berbasis soft computing metode ANFIS dapat membantu masalah pemberian pinjaman dengan memberikan alternatif keputusan yang dapat membantu mengefesienkan waktu dalam pengambilan keputusan oleh bank. ANFIS merupakan sistem hybrid yang menggabungkan kelebihan antara sistem fuzzy dan jaringan syaraf tiruan. Variabel input yang digunakan adalah penghasilan, tempat tinggal, jumlah tanggungan, jaminan, serta lama usaha dan output adalah keputusan diterima atau ditolaknya pengajuan pinjaman oleh debitur. Hasil uji coba pelatihan mengunakan jenis membership function yang paling efektif adalah jenis Generalized Bell dengan hasil rata-rata error sebesar 8.3278 x10-7. Metode ANFIS dapat digunakan dalam memberikan keputusan pemberian KUR dengan baik sesuai dengan jenis membership function dan iterasi pada tahap pelatihan jaringan.

2018 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Yusri Ikhwani

Bendungan riam kanan yang berada kabupaten banjar ialah salah satu waduk terbesar di kalimantan selatan yang ada di aranio, kabupaten banjar. Waduk buatan yang dalam pembangunannya memakan waktu selama 10 tahun ini dibangun membendung 8 sungai yang bersumber dari Pegunungan Meratus. Tujuan utama dibangunnya waduk riam kanan adalah untuk membangun pembangkit listrik tenaga air untuk daerah kalimantan selatan dan sekitarnya.Tujuan penelitian ini ialah untuk memprediksi tinggi muka air bendungan riam kanan menggunakan metode Adaptive Neuro Fuzzy Inference System (ANFIS) agar dapat bermanfaat dalam kebijakan strategis ketahanan energi khususnya ketahanan pangan dan energi listrik, khususnya ketersediaan air untuk saluran irigasi.Perkiraan prediksi ini menggunakan data tinggi muka air bendungan riam kanan dari tahun 2009 sampai dengan 2015 yang didapatkan dari PLTU riam kanan provinsi kalimantan selatan. Prosedur memprediksi diawali dengan melakukan proses pembagian data, yaitu menjadi data pelatihan dan data pengujian. Setelah itu dilakukan penentuan variabel-variabel pendukung input yang memberikan korelasi cukup signifikan terhadap variabel output. Serelah itu melakukan proses pengujian dengan membandingkan 2 membership function untuk menentukan yang mana memiliki tingkat akurasi yang baik dan nilai error yang rendah dalam memprediksi tinggi muka air bendungan riam kanan.Hasilnya ialah prediksi tinggi muka air bendungan riam kanan menggunakan metode Adaptive Neuro Fuzzy Inference System (ANFIS) dengan membandingkan 2 membership function dengan tingkat keakuratan menghasilkan nilai RMSE 0,010065 pada membership function Bell Kata kunci: bendungan riam kanan, anfis, prediksi, tinggi muka air, membership fungtion


2017 ◽  
Vol 1 (2) ◽  
pp. 65 ◽  
Author(s):  
Gusti Ahmad Fanshuri Alfarisy ◽  
Wayan Firdaus Mahmudy

Rainfall forcasting is a non-linear forecasting process that varies according to area and strongly influenced by climate change. It is a difficult process due to complexity of rainfall trend in the previous event and the popularity of Adaptive Neuro Fuzzy Inference System (ANFIS) with hybrid learning method give high prediction for rainfall as a forecasting model. Thus, in this study we investigate the efficient membership function of ANFIS for predicting rainfall in Banyuwangi, Indonesia. The number of different membership functions that use hybrid learning method is compared. The validation process shows that 3 or 4 membership function gives minimum RMSE results that use temperature, wind speed and relative humidity as parameters.


2020 ◽  
Vol 158 ◽  
pp. 05002
Author(s):  
Farhan Mohammad Khan ◽  
Smriti Sridhar ◽  
Rajiv Gupta

The detection of waterborne bacteria is crucial to prevent health risks. Current research uses soft computing techniques based on Artificial Neural Networks (ANN) for the detection of bacterial pollution in water. The limitation of only relying on sensor-based water quality analysis for detection can be prone to human errors. Hence, there is a need to automate the process of real-time bacterial monitoring for minimizing the error, as mentioned above. To address this issue, we implement an automated process of water-borne bacterial detection using a hybrid technique called Adaptive Neuro-fuzzy Inference System (ANFIS), that integrates the advantage of learning in an ANN and a set of fuzzy if-then rules with appropriate membership functions. The experimental data as the input to the ANFIS model is obtained from the open-sourced dataset of government of India data platform, having 1992 experimental laboratory results from the years 2003-2014. We have included the following water quality parameters: Temperature, Dissolved Oxygen (DO), pH, Electrical conductivity, Biochemical oxygen demand (BOD) as the significant factors in the detection and existence of bacteria. The membership function changes automatically with every iteration during training of the system. The goal of the study is to compare the results obtained from the three membership functions of ANFIS- Triangle, Trapezoidal, and Bell-shaped with 35 = 243 fuzzy set rules. The results show that ANFIS with generalized bell-shaped membership function is best with its average error 0.00619 at epoch 100.


2021 ◽  
Vol 8 (1) ◽  
pp. 114
Author(s):  
Rizky Prabowo ◽  
Zuliana Nurfadlilah ◽  
Favorisen Rosyking Lumbanraja ◽  
Didik Kurniawan

<p><em>The automotive industry in Indonesia has significant increase in the past decade. A famous car company opened a manufacturing branch to increase its production capacity in Indonesia. An increase in sales is directly proportional to an increase in service to customers. Damage on electrical system is the majority of modern car. Unfortunately, car users have minimal knowledge of car electricity. This article describes the technique of detecting the level of damage to a car's electrical system using the Adaptive Neuro-Fuzzy Inference System (Anfis) concept. As a case study in designing the system in question is the electrical system on the Toyota Avanza. Formation of a fuzzy inference system which is used for the system formation process through a GUI-based interface design (Graphic User Interface). The output of the system is a fuzzy analysis based on the membership function of the Gaussian, Triangular and Trapezoid methods to obtain an analysis of the level of damage to the electrical system on a Toyota Avanza. From the results of the system test for starter system, firewire system and lighting system,  it is concluded that the analysis of the level of damage to the electrical system on the car using Anfis based on the Gaussian membership function model is more accurate(reach 85%) in predicting the level of damage to the analyzed electrical system.</em></p><p><em><strong>Keywords</strong></em><em>: Anfis, Electrical System, Fuzzy Inference System, Toyota Avanza</em> </p><p><em>Industri otomotif di Indonesia mengalami peningkatan signifikan dalam kurun waktu satu dekade belakangan ini. Perusahaan mobil terkenal membuka pabrik manufaktur untuk meningkatkan kapasitas produksinya di Indonesia. Peningkatan penjualan berbanding lurus dengan peningkatan layanan kepada pelanggan. Kerusakan sistem kelistrikan merupakan kerusakan yang mayoritas dialami pengguna kendaraan mobil terbaru masa kini. Sayangnya, pengguna kendaraan mobil memiliki pengetahuan yang kurang tentang kelistrikan. Artikel ini mendeskripsikan tentang teknik mendeteksi tingkat kerusakan sistem kelistrikan mobil dengan menggunakan konsep Adaptive Neuro-Fuzzy Inference System (ANFIS). Sebagai studi kasus dalam mendesain sistem yang dimaksud adalah sistem kelistrikan pada Mobil Toyota Avanza. Pembentukan fuzzy inference system yang kemudian digunakan untuk proses pembentukan sistem melalui desain interface berbasis GUI (Graphic User Interface). Keluaran dari sistem yang dibuat adalah analisa fuzzy berdasarkan fungsi keanggotaan metode Gaussian, Triangular dan Trapezoid untuk mendapatkan analisa tingkat kerusakan sistem kelistrikan pada mobil Toyota Avanza. Dari hasil uji sistem yang dilakukan pada sistem starter, sistem pengapian dan sistem penerangan diperoleh kesimpulan analisis tingkat kerusakan sistem kelistrikan pada mobil dengan menggunakan Anfis berdasarkan model membership function Gaussian adalah lebih akurat (mencapai 85%) dalam menduga tingkat kerusakan sistem kelistrikan yang dianalisa.</em></p><p><em><strong>Kata kunci</strong></em><em>: Anfis; Fuzzy Inference System; Sistem Kelistrikan; Toyota Avanza</em></p>


Author(s):  
Cheng-Jian Lin ◽  
◽  
Chi-Yung Lee ◽  
Cheng-Hung Chen ◽  

In this paper, a novel neuro-fuzzy inference system with multi-level membership function (NFIS_MMF) for classification applications is proposed. The NFIS_MMF model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the NFIS_MMF model contains multi-level membership functions, which are multilevel activation functions. A self-constructing learning algorithm, which consists of the self-clustering algorithm (SCA), fuzzy entropy, and the backpropagation algorithm, is also proposed to construct the NFIS_MMF model and perform parameter learning. Simulations were conducted to show the performance and applicability of the proposed model.


2018 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Lilis Anggraini

Masyarakat di sektor pertanian dan kelautan khususnya sangat memerlukan informasi tingkat curah hujan yang akan terjadi karena sangat berpengaruh kepada proses masa tanam hingga hasil produksi yang akan didapat dan juga berpengaruh terhadap nelayan yang ingin melaut. Sementara prakiraan cuaca yang diterbitkan BMKG ke masyarakat masih berkisar pada prediksi musim tidak konsenterasi pada tingkat curah hujan, BMKG memiliki data tingkat curah hujan namun belum dioptimalkan sebagai informasi prediksi yang diharapkan.Oleh karena itu diperlukan metode yang akurat sehinga dapat memberikan nilai akurasi yang diharapkan dan dapat memberikan kontribusi dalam bidang pertanian, kelautan, cepat tanggap darurat cuaca buruk dan tranportasi udara. Karena data curah hujan termasuk data rentet waktu, sehingga dapat dianalisa dan diprediksi. Pada penelitian ini akan dilakukan prediksi dengan pendekatan statistik dan softcomputing menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS). Kata Kunci : Curah hujan, ANFIS, Membership Function.


2020 ◽  
Vol 42 (13) ◽  
pp. 2475-2481 ◽  
Author(s):  
Radha Krishnan Beemaraj ◽  
Mathalai Sundaram Chandra Sekar ◽  
Venkatraman Vijayan

This paper proposes an efficient methodology for predicting surface roughness using different soft computing approaches. The soft computing approaches are artificial neural network, adaptive neuro-fuzzy inference system and genetic algorithm. The proposed surface roughness prediction procedure has the following stages as feature extraction from the materials, classifications using random forests, adaptive neuro-fuzzy inference system (ANFIS). In this paper, the statistical features are extracted from material images as skewness, kurtosis, mean, variance, contrast, and energy.The surface roughness accuracy value varied between ANFIS and random forest classification in every measurement sequence. This limitation can be overcome by the genetic algorithm to optimize the best results. The optimization technique can produce more accurate surface roughness results for more than 98% and reduce the error rate up to 0.5%.


Sign in / Sign up

Export Citation Format

Share Document