scholarly journals Design and Development of Downdraft Gasifier to Generate Producer Gas

Author(s):  
Darbi Roslee ◽  
◽  
Sulastri Sabudin ◽  
Nadhirah Aqilah Noor Ariffin ◽  
Fathin Nadhirah Jamari ◽  
...  
2016 ◽  
Vol 90 ◽  
pp. 423-431 ◽  
Author(s):  
Nikhil Ashok Ingle ◽  
Sanjay Shridhar Lakade

Author(s):  
K.M. Nataraja ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal ◽  
Nandish Mathad

In this work agricultural waste-based coconut biomass and compressed agricultural waste derived from brown briquette were used for generation of gas in a downdraft gasifier. Its subsequent combustion takes place in a modified diesel engine using rice bran oil (RiOME) biodiesel injected in bi-fuel mode. For the injected pilot fuel, producer gas operation with coconut biomass derived fuel has improved liquid fuel saving. Downdraft gasifier was integrated with four stroke DI water cooled 5.2 kW CI engine at 1500 rpm speed. Experimentation results showed that for the gasifierengine system coconut biomass derived gas with diesel based dual fuel operation results in 9.05% higher BTE. RiOME producer gas (CNS) operation showed 16.1% decrease in EGT and 12.1% reduction in NOx emission compared to diesel based dual fuel operation. NOx emissions for the RiOME based engine operation were found to be lower than the diesel based operation. However, the smoke, HC and CO emissions were higher. Diesel fuel saving about 56% was achieved by diesel and producer gas (CNS) dual fuel operation and 100% biofuel utilization in RiOME -producer gas bi-fuel mode of operation was achieved. Further, heat release rates and cylinder pressure for RiOME producer gas (CNS) was marginally lesser than diesel operation.


2012 ◽  
Vol 267 ◽  
pp. 57-63
Author(s):  
Worapot Ngamchompoo ◽  
Kittichai Triratanasirichai

A comprehensive process model is developed for high temperature air – steam biomass gasification in a downdraft gasifier using the ASPEN PLUS simulator. The simulation results are compared with the experimental data obtained through pilot scale downdraft gasifier. In this study, the model is used to investigate the effects of gasifying agent preheating, equivalence ratio (ER), and steam/biomass (S/B) on producer gas composition, high heating value (HHV), and cold gas efficiency (CGE). Results indicate that H2 and CO contents have increased when gasifying agent preheating is used, while gasifying agent preheating has no effect with H2 and CO at high ER. At high level of S/B, the concentrations of H2 and CO are related with water-gas shift reaction in significant. HHV and CGE depend on the concentrations of H2 and CO in producer gas, which can increase by preheated gasifying agent. However, gasifying agent preheating should apply with waste heat from the process because there is no additional cost of energy price.


2019 ◽  
Vol 38 (4) ◽  
pp. 922 ◽  
Author(s):  
P.E. Akhator ◽  
A.I. Obanor ◽  
E.G. Sadjere

2018 ◽  
Vol 105 (1-3) ◽  
Author(s):  
V. Karuppasamy Vikraman ◽  
S. Pugalendhi ◽  
P. Subramanian ◽  
R. Angeeswaran ◽  
K. Chandrakumar

2018 ◽  
Vol 91 (6) ◽  
pp. 1034-1044 ◽  
Author(s):  
Muhammad Mubashar Omar ◽  
Anjum Munir ◽  
Manzoor Ahmad ◽  
Asif Tanveer

2018 ◽  
Vol 5 (2) ◽  
pp. 443
Author(s):  
Ari Susandy Sanjaya ◽  
S Suhartono ◽  
Herri Susanto

Coal gasification utilization for tea drying unit. Anticipating the rise of fuel oil, the management of a tea plantation and drying plant has considered to substitute its oil consumption with producer gas (gaseous fuel obtained from gasification process). A tea drying unit normally consumes 70 L/h of industrial diesel oil and is operated 10 hours per day. The gasification unit consisted of a down draft fixed bed gasifier (designed capacity of about 100 kg/h), gas cooling and cleaning systems. The gas producer was delivered to the tea processing unit and burned to heat the drying oil: Low calorific value coal (4500 kcal/kg) and wood waste (4000 kcal/kg) have been used as fuel. The gasification unit could be operated as long as 8 hours without refueled since the coal hopper on the toppart of gasifier has a capacity of 1000 kg. Sometimes, the gasification process must be stopped before coal completely consumed due to ash melting inside the gasifier. Combustion of producer gas produced a pale-blue flame, probably due to a lower calorific value of the producer gas or too much excess air. Temperature of heating-air heated by combustion of this producer gas was only up to 96 oC. To achieve the target temperature of 102 oC, a small oil burner must he operated at a rate ofabout 15 L/h. Thus the oil replacement was about 78%.Keywords:  Fuel oil, Producer gas, Downdraft gasifier, Dual fuel, Calorific value, Burner. AbstrakKenaikan harga bahan bakar minyak untuk industri pada awal 2006 telah mendorong berbagai pemikiran dan upaya pemanfaatan bahan bakar alternatif. Sebuah unit gasifikasi telah dipasang di pabrik teh sebagai penyedia bahan bakar alternatif. Unit gasifikasi tersebut terdiri dari gasifier, pendingin, pembersih gas, dan blower. Unit gasifikasi ini ditargetkan untuk dapat menggantikan konsumsi minyak bakar 70 L/jam. Gasifier dirancang untuk kapasitas 120 kg/jam batubara, dan memiliki spesifikasi sebagai berikut: downdraft gasifier; diameter tenggorokan 40 cm, diameter zona reduksi 80 cm. Bunker di bagian atas gasifier memiliki kapasitas sekitar 1000 kg batubara agar gasifier dapat dioperasikan selama 8 jam tanpa pengisian-ulang. Bahan baku gasifikasi yang telah diuji-coba adalah batuhara kalori rendah (4500 kcal/kg) dan limbah kayu (4000 kcal/kg). Gas produser (hasil gasifikasi) dibakar pada burner untuk memanaskan udara pengering teh sampai temperatur target 102 oC. Pembakaran gas produser ternyata menghasilkan api biru pucat yang mungkin disebabkan oleh rendahnya kalor bakar gas dan tingginya udara-lebih. Temperatur udara pengering hasil pemanasan dengan api gas produser hanya mencapai 96 oC. Dan untuk mencapai temperatur udara pengering 102 oC, burner gas prod user harus dibantu dengan burner minyak 15 L/jam. Jadi operasi dual fued ini dapat memberi penghematan minyak bakar 78%.Kata kunci: Minyak bakar, Gas produser, Downdraft gasifier, Dual fuel, Kalor bakar, Burner. 


Sign in / Sign up

Export Citation Format

Share Document