Enhanced producer gas generation by utilizing pistachio shells as a biomass feedstock in an open core downdraft gasifier

Author(s):  
Mohit Sharma ◽  
Rajneesh Kaushal
2022 ◽  
Vol 7 ◽  
pp. 10
Author(s):  
Miguel Mendonça ◽  
Victor Mantilla ◽  
João Patela ◽  
Valter Silva ◽  
Fernanda Resende

This paper addresses the design, development and experimental tests of a prototype of fuel gas generation system based on biomass gasification for small-scale applications, around 5 kW. It comprises the small scale downdraft gasifier and the gas cleaning system aiming to clean-up the producer gas to be used in the upstream Internal Combustion Engine (ICE). The design of the downdraft gasifier prototype follows the methodologies that have been reported on the available literature. However, since these methodologies apply to gasifiers with larger rated powers, the adopted methodology is based on the extrapolation of the main parameters used for larger gasifiers design. For runing the ICE the producer gas requires to have a specific gas composition with an acceptable range of impurities. Therefore, a clean-up system was proposed following three stages: in first instance a hot gas clean-up using a cyclone designed to eliminate particles and compounds; then a heat exchanger was used for cooling the gas to condensate tars and water; finally a cold gas clean-up is performed by filtration using two filter steps: the first one using organic material (biomass) and the second one using a polypropylene cartridge filter. Experimental tests were performed using the developed imbert downdraft gasifier prototype, using pellets as feedstock. The preliminary results allow verifying several drawbacks that will difficult an effective integration of the developed prototype for small scale power generation applications based on ICE using low density feedstock.


2021 ◽  
Vol 13 (4) ◽  
pp. 2027
Author(s):  
Md. Emdadul Hoque ◽  
Fazlur Rashid ◽  
Muhammad Aziz

Synthetic gas generated from the gasification of biomass feedstocks is one of the clean and sustainable energy sources. In this work, a fixed-bed downdraft gasifier was used to perform the gasification on a lab-scale of rice husk, sawdust, and coconut shell. The aim of this work is to find and compare the synthetic gas generation characteristics and prospects of sawdust and coconut shell with rice husk. A temperature range of 650–900 °C was used to conduct gasification of these three biomass feedstocks. The feed rate of rice husk, sawdust, and coconut shell was 3–5 kg/h, while the airflow rate was 2–3 m3/h. Experimental results show that the highest generated quantity of methane (vol.%) in synthetic gas was achieved by using coconut shell than sawdust and rice husk. It also shows that hydrogen production was higher in the gasification of coconut shell than sawdust and rice husk. In addition, emission generations in coconut shell gasification are lower than rice husk although emissions of rice husk gasification are even lower than fossil fuel. Rice husk, sawdust, and coconut shell are cost-effective biomass sources in Bangladesh. Therefore, the outcomes of this paper can be used to provide clean and economic energy sources for the near future.


Energy ◽  
2021 ◽  
pp. 121821
Author(s):  
Muhammad Awais ◽  
Muhammad Mubashar Omar ◽  
Anjum Munir ◽  
Wei li ◽  
Muhammad Ajmal ◽  
...  

Author(s):  
K.M. Nataraja ◽  
N.R. Banapurmath ◽  
V.S. Yaliwal ◽  
Nandish Mathad

In this work agricultural waste-based coconut biomass and compressed agricultural waste derived from brown briquette were used for generation of gas in a downdraft gasifier. Its subsequent combustion takes place in a modified diesel engine using rice bran oil (RiOME) biodiesel injected in bi-fuel mode. For the injected pilot fuel, producer gas operation with coconut biomass derived fuel has improved liquid fuel saving. Downdraft gasifier was integrated with four stroke DI water cooled 5.2 kW CI engine at 1500 rpm speed. Experimentation results showed that for the gasifierengine system coconut biomass derived gas with diesel based dual fuel operation results in 9.05% higher BTE. RiOME producer gas (CNS) operation showed 16.1% decrease in EGT and 12.1% reduction in NOx emission compared to diesel based dual fuel operation. NOx emissions for the RiOME based engine operation were found to be lower than the diesel based operation. However, the smoke, HC and CO emissions were higher. Diesel fuel saving about 56% was achieved by diesel and producer gas (CNS) dual fuel operation and 100% biofuel utilization in RiOME -producer gas bi-fuel mode of operation was achieved. Further, heat release rates and cylinder pressure for RiOME producer gas (CNS) was marginally lesser than diesel operation.


2012 ◽  
Vol 267 ◽  
pp. 57-63
Author(s):  
Worapot Ngamchompoo ◽  
Kittichai Triratanasirichai

A comprehensive process model is developed for high temperature air – steam biomass gasification in a downdraft gasifier using the ASPEN PLUS simulator. The simulation results are compared with the experimental data obtained through pilot scale downdraft gasifier. In this study, the model is used to investigate the effects of gasifying agent preheating, equivalence ratio (ER), and steam/biomass (S/B) on producer gas composition, high heating value (HHV), and cold gas efficiency (CGE). Results indicate that H2 and CO contents have increased when gasifying agent preheating is used, while gasifying agent preheating has no effect with H2 and CO at high ER. At high level of S/B, the concentrations of H2 and CO are related with water-gas shift reaction in significant. HHV and CGE depend on the concentrations of H2 and CO in producer gas, which can increase by preheated gasifying agent. However, gasifying agent preheating should apply with waste heat from the process because there is no additional cost of energy price.


Author(s):  
Darbi Roslee ◽  
◽  
Sulastri Sabudin ◽  
Nadhirah Aqilah Noor Ariffin ◽  
Fathin Nadhirah Jamari ◽  
...  

2018 ◽  
Vol 105 (1-3) ◽  
Author(s):  
V. Karuppasamy Vikraman ◽  
S. Pugalendhi ◽  
P. Subramanian ◽  
R. Angeeswaran ◽  
K. Chandrakumar

2018 ◽  
Vol 225 ◽  
pp. 04001 ◽  
Author(s):  
Norazilah Tamili ◽  
Lee Kean Chuan ◽  
Shaharin A. Sulaiman ◽  
Mohamad Nazmi Z. Moni ◽  
Muddasser Inayat ◽  
...  

Reliance on a single biomass to generate electrical power can cause disruption due to the inconsistencies in the supply of biomass feedstock. Co-gasification of different biomass can mitigate the problem of inconsistence biomass supply. The aim of this study to investigate thermochemical properties of corn residues (CR) and coconut shells (CS) and syngas performance produced from co-gasification of CR and CS. Biomass materials were characterized in order to understand their physical properties in relation to thermochemical conversion. Co-gasification of CR and CS was carried out in externally heated downdraft gasifier at CR:CS ratio of 50:50, 40:60 and 20: 80. CO composition obtained from blended feedstock is higher as compared to the without blended feedstock. The CO2 and CH4 concentration were increased as CS proportion increased in blend. Biomass with higher moisture content plays important role in the H2 production due to the supercritical water gasification. The blending ratio of CR and CS at 20:80 had a positive synergetic effect as evident by increase in the gas composition for CO, CH4 and H2. It is concluded that co-gasification results of CR and CS is practical and can be considered to complement each other.


2013 ◽  
Author(s):  
Yunye Shi ◽  
Tejasvi Sharma ◽  
Albert Ratner

Biomass Gasification is incomplete combustion of biomass resulting in production of combustible gases consisting of Carbon monoxide (CO), Hydrogen (H2) and traces of Methane (CH4), the mixture of which is called producer gas. Producer gas can be cleaned and directly used in internal combustion engines or can be converted to various attractive biofuels. The paper sludge is a byproduct produced from recycled cardboard and into pallets. This paper is focused on gasification of paper sludge and its real-time gas evolution through this process. Variables include temperature; equivalence ratio and superficial velocity were tested and analyzed. Results demonstrate that CO2 and H2 formation is favored at higher temperature and higher oxygen concentrations. CO production is ruled by oxidation and water shift reactions but it is difficult to determine from two single variables.


Sign in / Sign up

Export Citation Format

Share Document