scholarly journals Effect of Hydrostatic Pressure and Temperature on Quantum Confinement of AlGaN/GaN HEMTs

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rajab Yahyazadeh ◽  
◽  
Zahra Hashempour ◽  

In this paper, an analytical model for quantum confinement electron density in two-dimensional quantum well, has been investigated. In order to obtain the exact AlGaN/GaN HEMTs parameters such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects are taken into account. It has been found that the electron density decreases with increasing temperature and increases with increasing hydrostatic pressure. With increasing hydrostatic pressure, the effective mass decreases and the quantum confinement electrons are increased in the quantum well. Also with increasing hydrostatic pressure, the height of wave functions increase and decreases electron wave functions to penetrate the quantum barrier but increasing the temperature behaves the opposite of increasing the pressure. However, with increasing temperature, the effective mass is increased and the quantum confinement electrons are reduced. The calculated results for electron density are in good agreement with existing experimental data.

2005 ◽  
Vol 12 (02) ◽  
pp. 155-159 ◽  
Author(s):  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

Using a variational approach, we have investigated the effects of the hydrostatic pressure, the well dimension, impurity position and electric field direction on the binding energy of shallow donor impurities in GaAs/GaAlAs graded quantum well (GQW). We have found that the changes in donor binding energy in GQW strongly depend not only on the quantum confinement, but also on the hydrostatic pressure, on the direction of the electric field and on the impurity position.


2007 ◽  
Vol 06 (01) ◽  
pp. 37-40 ◽  
Author(s):  
P. NITHIANANTHI ◽  
K. JAYAKUMAR

The influence of Γ–X band crossing due to the applied hydrostatic pressure on the diamagnetic susceptibility (χ dia ) of a donor in low-lying excited states like 2s, 2p0, 2p± in a GaAs / Al x Ga 1-x As Quantum Well has been investigated in the effective mass approximation by considering the nonparabolicity of the conduction band. We notice that the effect of Γ–X band mixing is significant on χ dia of a donor lying in excited states. Moreover, the effect of non-parabolicity on χ dia is also predominant for lower well width region. The results are presented and discussed.


2011 ◽  
Vol 18 (05) ◽  
pp. 147-152 ◽  
Author(s):  
U. YESILGUL ◽  
F. UNGAN ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

Using the effective-mass approximation within a variational scheme, we have calculated the diamagnetic susceptibility and binding energy of a hydrogenic donor in a quantum well under different temperatures and hydrostatic pressure conditions. Our calculation have revealed the dependence of the diamagnetic susceptibility and the impurity binding on temperature and hydrostatic pressure.


2003 ◽  
Vol 17 (24) ◽  
pp. 1253-1264 ◽  
Author(s):  
ECATERINA C. NICULESCU ◽  
LILIANA BURILEANU

The effects of electric and magnetic fields on the ground (1S-like) and excited (2S-like) states of an exciton in a narrow GaAs/Al x Ga 1-x As parabolic quantum well are studied. The effective-mass approximation within a perturbation-variational scheme is adopted. We find that the hole-mass anisotropy and nonparabolicity of the conduction band significantly modify the electron properties in such structures in which the quantum confinement plays a fundamental role. The effect of the electric field on the spatial distribution of the electron and hole is also investigated. In the low field regime, the diamagnetic shift of the exciton energies is calculated.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
L. Caroline Sugirtham ◽  
A. John Peter ◽  
Chang Woo Lee

The binding energy of a polaron confined in a GaAs/Ga1-xAlxAs quantum well wire is calculated within the framework of the variational technique and Lee-Low Pines approach. The polaron-induced photoionization cross section as a function of normalized photon energy for a on-centre donor impurity in the quantum wire is investigated. The oscillator strength with the geometrical effect is studied taking into account the polaron effects in a GaAs/Ga0.8Al0.2As quantum well wire. The effect of polaron on the third-order susceptibility of third harmonic generation is studied. Our theoretical results are shown to be in good agreement with previous investigations.


Sign in / Sign up

Export Citation Format

Share Document