scholarly journals Application of the method of renormalization with limitation to remote sensing images obtained with synthetic aperture radars.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A.V. Kokoshkin ◽  

This article proposes an application of the method of renormalization with limitation (MRL) to suppress speckle noise in SAR images. This is because the method of renormalization with limitation, by its definition, renormalizes the SAR image spectrum to a universal reference spectrum (URS) model, which is a "good" quality grayscale spectrum model. To increase the overall sharpness of the image, consistently with the MRL, it is proposed to apply the classical Laplacian. This study allows us to conclude that the application of MRL to SAR images can significantly reduce speckle noise.


2021 ◽  
Vol 11 (12) ◽  
pp. 5569
Author(s):  
Sujin Shin ◽  
Youngjung Kim ◽  
Insu Hwang ◽  
Junhee Kim ◽  
Sungho Kim

Detecting objects in synthetic aperture radar (SAR) imagery has received much attention in recent years since SAR can operate in all-weather and day-and-night conditions. Due to the prosperity and development of convolutional neural networks (CNNs), many previous methodologies have been proposed for SAR object detection. In spite of the advance, existing detection networks still have limitations in boosting detection performance because of inherently noisy characteristics in SAR imagery; hence, separate preprocessing step such as denoising (despeckling) is required before utilizing the SAR images for deep learning. However, inappropriate denoising techniques might cause detailed information loss and even proper denoising methods does not always guarantee performance improvement. In this paper, we therefore propose a novel object detection framework that combines unsupervised denoising network into traditional two-stage detection network and leverages a strategy for fusing region proposals extracted from both raw SAR image and synthetically denoised SAR image. Extensive experiments validate the effectiveness of our framework on our own object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-SkyMed satellites. Extensive experiments validate the effectiveness of our framework on our own object detection datasets constructed with remote sensing images from TerraSAR-X and COSMO-SkyMed satellites. The proposed framework shows better performances when we compared the model with using only noisy SAR images and only denoised SAR images after despeckling under multiple backbone networks.



Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.



2021 ◽  
Vol 13 (18) ◽  
pp. 3733
Author(s):  
Hoonyol Lee ◽  
Jihyun Moon

Ground-based synthetic aperture radar (GB-SAR) is a useful tool to simulate advanced SAR systems with its flexibility on RF system and SAR configuration. This paper reports an indoor experiment of bistatic/multistatic GB-SAR operated in Ku-band with two antennae: one antenna was stationary on the ground and the other was moving along a linear rail. Multiple bistatic GB-SAR images were taken with various stationary antenna positions, and then averaged to simulate a multistatic GB-SAR configuration composed of a moving Tx antenna along a rail and multiple stationary Rx antennae with various viewing angles. This configuration simulates the use of a spaceborne/airborne SAR system as a transmitting antenna and multiple ground-based stationary antennae as receiving antennae to obtain omni-directional scattering images. This SAR geometry with one-stationary and one-moving antennae configuration was analyzed and a time-domain SAR focusing algorithm was adjusted to this geometry. Being stationary for one antenna, the Doppler rate was analyzed to be half of the monostatic case, and the azimuth resolution was doubled. Image quality was enhanced by identifying and reducing azimuth ambiguity. By averaging multiple bistatic images from various stationary antenna positions, a multistatic GB-SAR image was achieved to have better image swath and reduced speckle noise.



Author(s):  
Khwairakpam Amitab ◽  
Debdatta Kandar ◽  
Arnab K. Maji

Synthetic Aperture Radar (SAR) are imaging Radar, it uses electromagnetic radiation to illuminate the scanned surface and produce high resolution images in all-weather condition, day and night. Interference of signals causes noise and degrades the quality of the image, it causes serious difficulty in analyzing the images. Speckle is multiplicative noise that inherently exist in SAR images. Artificial Neural Network (ANN) have the capability of learning and is gaining popularity in SAR image processing. Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that consists of an input layer, several hidden layers, and an output layer. We have simulated MLP with two hidden layer in Matlab. Speckle noises were added to the target SAR image and applied MLP for speckle noise reduction. It is found that speckle noise in SAR images can be reduced by using MLP. We have considered Log-sigmoid, Tan-Sigmoid and Linear Transfer Function for the hidden layers. The MLP network are trained using Gradient descent with momentum back propagation, Resilient back propagation and Levenberg-Marquardt back propagation and comparatively evaluated the performance.



Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3535
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing

Sparse representation (SR) has been verified to be an effective tool for pattern recognition. Considering the multiplicative speckle noise in synthetic aperture radar (SAR) images, a product sparse representation (PSR) algorithm is proposed to achieve SAR target configuration recognition. To extract the essential characteristics of SAR images, the product model is utilized to describe SAR images. The advantages of sparse representation and the product model are combined to realize a more accurate sparse representation of the SAR image. Moreover, in order to weaken the influences of the speckle noise on recognition, the speckle noise of SAR images is modeled by the Gamma distribution, and the sparse vector of the SAR image is obtained from q statistical standpoint. Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) database. The experimental results validate the effectiveness and robustness of the proposed algorithm, which can achieve higher recognition rates than some of the state-of-the-art algorithms under different circumstances.



2021 ◽  
Vol 13 (17) ◽  
pp. 3444
Author(s):  
Hao Wang ◽  
Zhendong Ding ◽  
Xinyi Li ◽  
Shiyu Shen ◽  
Xiaodong Ye ◽  
...  

Synthetic aperture radar (SAR) images are often disturbed by speckle noise, making SAR image interpretation tasks more difficult. Therefore, speckle suppression becomes a pre-processing step. In recent years, approaches based on convolutional neural network (CNN) achieved good results in synthetic aperture radar (SAR) images despeckling. However, these CNN-based SAR images despeckling approaches usually require large computational resources, especially in the case of huge training data. In this paper, we proposed a SAR image despeckling method using a CNN platform with a new learnable spatial activation function, which required significantly fewer network parameters without incurring any degradation in performance over the state-of-the-art despeckling methods. Specifically, we redefined the rectified linear units (ReLU) function by adding a convolutional kernel to obtain the weight map of each pixel, making the activation function learnable. Meanwhile, we designed several experiments to demonstrate the advantages of our method. In total, 400 images from Google Earth comprising various scenes were selected as a training set in addition to 10 Google Earth images including athletic field, buildings, beach, and bridges as a test set, which achieved good despeckling effects in both visual and index results (peak signal to noise ratio (PSNR): 26.37 ± 2.68 and structural similarity index (SSIM): 0.83 ± 0.07 for different speckle noise levels). Extensive experiments were performed on synthetic and real SAR images to demonstrate the effectiveness of the proposed method, which proved to have a superior despeckling effect and higher ENL magnitudes than the existing methods. Our method was applied to coniferous forest, broad-leaved forest, and conifer broad-leaved mixed forest and proved to have a good despeckling effect (PSNR: 23.84 ± 1.09 and SSIM: 0.79 ± 0.02). Our method presents a robust framework inspired by the deep learning technology that realizes the speckle noise suppression for various remote sensing images.



2020 ◽  
Author(s):  
D Ratha ◽  
P Gamba ◽  
A Bhattacharya ◽  
Alejandro Frery

© 2004-2012 IEEE. Built-up (BU) area extraction from remote sensing images is important to monitor and manage urbanization and industrialization. In this letter, we propose two BU area extraction techniques based on the analysis of fully polarimetric synthetic aperture radar (PolSAR) data. Both methods exploit the geodesic distance on the unit sphere in the space of Kennaugh matrices. The first method is based on the three dominant scattering types in the scene and compares them with scattering models; if any of them matches with BU type elementary scattering models, then the pixel is said to belong to a BU area. The second method is based on a novel PolSAR BU index (RBUI) composed by considering scattering mechanisms from BU structures. The two proposed techniques are validated on two different urban scenes, one acquired at C-band by RADARSAT-2 and other at L-band by ALOS-2 SAR sensors.



2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yixiang Lu ◽  
Qingwei Gao ◽  
Dong Sun ◽  
Dexiang Zhang

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise generated by radar coherent wave. In this paper, a new despeckling algorithm based on directionlets using multiscale products is proposed. We first take an anisotropic directionlet transform on the logarithmically transformed SAR images and multiply the coefficients at adjacent scales to enhance the details of image under consideration. Then, different from traditional thresholding methods, a threshold is applied to the multiscale products of the directionlet coefficients to suppress noise. Since the multiplication amplifies the significant features of signal and dilute noise, the proposed method reduces noise effectively while preserving edge structures. Finally, we compare the performance of the proposed algorithm with other despeckling methods applied to synthetic image and real SAR images. Experimental results demonstrate the effectiveness of the proposed method in SAR images despeckling.



2020 ◽  
Author(s):  
D Ratha ◽  
P Gamba ◽  
A Bhattacharya ◽  
Alejandro Frery

© 2004-2012 IEEE. Built-up (BU) area extraction from remote sensing images is important to monitor and manage urbanization and industrialization. In this letter, we propose two BU area extraction techniques based on the analysis of fully polarimetric synthetic aperture radar (PolSAR) data. Both methods exploit the geodesic distance on the unit sphere in the space of Kennaugh matrices. The first method is based on the three dominant scattering types in the scene and compares them with scattering models; if any of them matches with BU type elementary scattering models, then the pixel is said to belong to a BU area. The second method is based on a novel PolSAR BU index (RBUI) composed by considering scattering mechanisms from BU structures. The two proposed techniques are validated on two different urban scenes, one acquired at C-band by RADARSAT-2 and other at L-band by ALOS-2 SAR sensors.



Sign in / Sign up

Export Citation Format

Share Document