azimuth resolution
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 3)

2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Yongkang Li ◽  
Tianyu Huo ◽  
Chenxi Yang ◽  
Tong Wang ◽  
Juan Wang ◽  
...  

This paper studies the imaging of a ground moving target with airborne circular stripmap synthetic aperture radar (CSSAR). First, the range equation of a target moving with accelerations is developed. Then, a new range model of high accuracy is proposed, since the commonly used second-order Taylor-approximated range model is inaccurate when the azimuth resolution is relatively high or the target moves with accelerations. The proposed range model also makes it easy to derive an accurate analytical expression for the target’s 2-D spectrum. Third, based on the proposed range model, the target’s 2-D spectrum is derived and an efficient imaging method is proposed. The proposed imaging method implements focusing via a phase multiplication in the 2-D frequency domain and utilizes the genetic algorithm to accomplish an efficient search of the parameters of the proposed range model. Finally, numerical experiments are conducted to validate the proposed range model and the proposed imaging method.


2021 ◽  
Vol 13 (20) ◽  
pp. 4061
Author(s):  
Faguang Chang ◽  
Chunrui Yu ◽  
Dexin Li ◽  
Yifei Ji ◽  
Zhen Dong

The zero-Doppler centroid control in geosynchronous synthetic aperture radar (GEO SAR) is beneficial to reduce the imaging complexity (reduces range-azimuth coupling in received data), which can be realized by adjusting the radar line of sight (RLS). In order to maintain the zero-Doppler centroid throughout the whole orbit of the GEO SAR satellite, the RLS needs to be adjusted in real-time. Due to the ultra-long synthetic aperture time of GEO SAR, the RLS variation during the synthetic aperture time cannot be neglected. However, in the previous related papers, the real-time variation of RLS during the synthetic aperture time was not taken into account in the calculation of Doppler parameters, which are closely related to the RLS, resulting in inaccurate calculation of Doppler parameters. Considering this issue, an accurate Doppler model (the model of relative motion between satellite and ground target) of GEO SAR is proposed in this paper for the accurate calculation of Doppler parameters (Doppler centroid and Doppler bandwidth and other parameters). Finally, simulation experiments are designed to confirm the effectiveness and necessity of the proposed model. The results indicate that the RLS variation during the synthetic aperture time has a considerable effect on Doppler parameters performance of the GEO SAR, and refers to a more stable azimuth resolution performance (the resolution is kept near a relatively stable value at most positions of the elliptical orbit) compared with the case that does not consider the real-time zero-Doppler centroid control.


2021 ◽  
Vol 13 (18) ◽  
pp. 3733
Author(s):  
Hoonyol Lee ◽  
Jihyun Moon

Ground-based synthetic aperture radar (GB-SAR) is a useful tool to simulate advanced SAR systems with its flexibility on RF system and SAR configuration. This paper reports an indoor experiment of bistatic/multistatic GB-SAR operated in Ku-band with two antennae: one antenna was stationary on the ground and the other was moving along a linear rail. Multiple bistatic GB-SAR images were taken with various stationary antenna positions, and then averaged to simulate a multistatic GB-SAR configuration composed of a moving Tx antenna along a rail and multiple stationary Rx antennae with various viewing angles. This configuration simulates the use of a spaceborne/airborne SAR system as a transmitting antenna and multiple ground-based stationary antennae as receiving antennae to obtain omni-directional scattering images. This SAR geometry with one-stationary and one-moving antennae configuration was analyzed and a time-domain SAR focusing algorithm was adjusted to this geometry. Being stationary for one antenna, the Doppler rate was analyzed to be half of the monostatic case, and the azimuth resolution was doubled. Image quality was enhanced by identifying and reducing azimuth ambiguity. By averaging multiple bistatic images from various stationary antenna positions, a multistatic GB-SAR image was achieved to have better image swath and reduced speckle noise.


2021 ◽  
Vol 13 (14) ◽  
pp. 2768
Author(s):  
Qiping Zhang ◽  
Yin Zhang ◽  
Yongchao Zhang ◽  
Yulin Huang ◽  
Jianyu Yang

Scanning radar enables wide-range imaging through antenna scanning and is widely used for radar warning. The Rayleigh criterion indicates that narrow beams of radar are required to improve the azimuth resolution. However, a narrower beam means a larger antenna aperture. In practical applications, due to platform limitations, the antenna aperture is limited, resulting in a low azimuth resolution. The conventional sparse super-resolution method (SSM) has been proposed for improving the azimuth resolution of scanning radar imaging and achieving superior performance. This method uses the L1 norm to represent the sparse prior of the target and solves the L1 regularization problem to achieve super-resolution imaging under the regularization framework. The resolution of strong-point targets is improved efficiently. However, for some targets with typical shapes, the strong sparsity of the L1 norm treats them as strong-point targets, resulting in the loss of shape characteristics. Thus, we can only see the strong points in its processing results. However, in some applications that need to identify targets in detail, SSM can lead to false judgments. In this paper, a sparse denoising-based super-resolution method (SDBSM) is proposed to compensate for the deficiency of traditional SSM. The proposed SDBSM uses a sparse minimization scheme for denoising, which helps to reduce the influence of noise. Then, the super-resolution imaging is achieved by alternating iterative denoising and deconvolution. As the proposed SDBSM uses the L1 norm for denoising rather than deconvolution, the strong sparsity constraint of the L1 norm is reduced. Therefore, it can effectively preserve the shape of the target while improving the azimuth resolution. The performance of the proposed SDBSM was demonstrated via simulation and real data processing results.


2021 ◽  
Vol 13 (13) ◽  
pp. 2471
Author(s):  
Mingkai Ding ◽  
Peng Tong ◽  
Yinsheng Wei ◽  
Lei Yu

In this paper, the aperture synthesis processing techniques for the distributed shipborne high frequency hybrid sky-surface wave radar (HFHSSWR) are proposed to improve the azimuth resolution and obtain the velocity vector and the azimuth estimation of the moving target. First, the system geometry and the signal model of the moving target for the distributed shipborne HFHSSWR are formulated, and then the azimuth resolution improvement principle is derived. Second, based on the developed signal model, we propose an azimuth resolution improvement algorithm, which can obtain the synthetic azimuth bandwidth and an improved resolution using sub-band combination. Finally, a target parameters inversion method is introduced to estimate the target velocity vector and the target azimuth, by solving the equations regarding the target geometry and echo signal parameters numerically. The simulations are performed to verify the proposed algorithms. The results indicate that the distributed synthetic aperture techniques effectively improve the azimuth resolution of this radar, and can obtain the target velocity vector and the high-precision estimation of the target azimuth.


2021 ◽  
Vol 39 (3) ◽  
pp. 515-531
Author(s):  
Ekaterina Vorobeva ◽  
Marine De Carlo ◽  
Alexis Le Pichon ◽  
Patrick Joseph Espy ◽  
Sven Peter Näsholm

Abstract. This study investigates the use of a vespagram-based approach as a tool for multi-directional comparison between simulated microbarom soundscapes and infrasound data recorded at ground-based array stations. Data recorded at the IS37 station in northern Norway during 2014–2019 have been processed to generate vespagrams (velocity spectral analysis) for five frequency bands between 0.1 and 0.6 Hz. The back azimuth resolution between the vespagram and the microbarom model is harmonized by smoothing the modeled soundscapes along the back azimuth axis with a kernel corresponding to the frequency-dependent array resolution. An estimate of similarity between the output of the microbarom radiation and propagation model and infrasound observations is then generated based on the image-processing approach of the mean square difference. The analysis reveals that vespagrams can monitor seasonal variations in the microbarom azimuthal distribution, amplitude, and frequency, as well as changes during sudden stratospheric warming events. The vespagram-based approach is computationally inexpensive, can uncover microbarom source variability, and has the potential for near-real-time stratospheric diagnostics and atmospheric model assessment.


2021 ◽  
Vol 13 (4) ◽  
pp. 737
Author(s):  
Ilgin Seker ◽  
Marco Lavalle

3D imaging of Earth’s surface layers (such as canopy, sub-surface, or ice) requires not just the penetration of radar signal into the medium, but also the ability to discriminate multiple scatterers within a slant-range and azimuth resolution cell. The latter requires having multiple radar channels distributed in across-track direction. Here, we describe the theory of multi-static radar tomography with emphasis on resolution, SNR, sidelobes, and nearest ambiguity location vs. platform distribution, observation geometry, and different multi-static modes. Signal-based 1D and 2D simulations are developed and results for various observation geometries, target distributions, acquisition modes, and radar parameters are shown and compared with the theory. Pros and cons of multi-static modes are compared and discussed. Results for various platform formations are shown, revealing that unequal spacing is useful to suppress ambiguities at the cost of increased multiplicative noise. In particular, we demonstrate that the multiple-input multiple-output (MIMO) mode, in combination with nonlinear spacing, outperforms the other modes in terms of ambiguity, sidelobe levels, and noise suppression. These findings are key to guiding the design of tomographic SAR formations for accurate surface topography and vegetation mapping.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 817
Author(s):  
Weibo Huo ◽  
Qiping Zhang ◽  
Yin Zhang ◽  
Yongchao Zhang ◽  
Yulin Huang ◽  
...  

The super-resolution method has been widely used for improving azimuth resolution for radar forward-looking imaging. Typically, it can be achieved by solving an undifferentiable L1 regularization problem. The split Bregman algorithm (SBA) is a great tool for solving this undifferentiable problem. However, its real-time imaging ability is limited to matrix inversion and iterations. Although previous studies have used the special structure of the coefficient matrix to reduce the computational complexity of each iteration, the real-time performance is still limited due to the need for hundreds of iterations. In this paper, a superfast SBA (SFSBA) is proposed to overcome this shortcoming. Firstly, the super-resolution problem is transmitted into an L1 regularization problem in the framework of regularization. Then, the proposed SFSBA is used to solve the nondifferentiable L1 regularization problem. Different from the traditional SBA, the proposed SFSBA utilizes the low displacement rank features of Toplitz matrix, along with the Gohberg-Semencul (GS) representation to realize fast inversion of the coefficient matrix, reducing the computational complexity of each iteration from O(N3) to O(N2). It uses a two-order vector extrapolation strategy to reduce the number of iterations. The convergence speed is increased by about 8 times. Finally, the simulation and real data processing results demonstrate that the proposed SFSBA can effectively improve the azimuth resolution of radar forward-looking imaging, and its performance is only slightly lower compared to traditional SBA. The hardware test shows that the computational efficiency of the proposed SFSBA is much higher than that of other traditional super-resolution methods, which would meet the real-time requirements in practice.


2020 ◽  
Author(s):  
Ekaterina Vorobeva ◽  
Marine De Carlo ◽  
Alexis Le Pichon ◽  
Patrick Joseph Espy ◽  
Sven Peter Näsholm

Abstract. This study investigates the use of a vespagram-based approach as a tool for multi-directional comparison between simulated microbarom soundscapes and infrasound data recorded at ground-based array stations. Data recorded at the IS37 station in northern Norway during 2014–2019 have been processed to generate vespagrams (velocity spectral analysis) for five frequency bands between 0.1 and 0.6 Hz. The back-azimuth resolution between vespagrams and a microbarom model is harmonized by smoothing the modelled soundscapes along the back-azimuth axis with a kernel corresponding to the frequency-dependent array resolution. An estimate of similarity between the output of a microbarom radiation and propagation model and infrasound observations is then generated based on the image processing approach of mean-square difference. The analysis revealed that vespagrams can monitor seasonal variations in the microbarom azimuth distribution, amplitude, and frequency, as well as changes during sudden stratospheric warming. The vespagram-based approach is computationally inexpensive, can uncover microbarom source variability, and has potential for near-real-time stratospheric diagnostics and atmospheric model assessment.


Sign in / Sign up

Export Citation Format

Share Document