scholarly journals FORMS OF ORE COMPONENT OCCURRENCE AND CONDITIONS OF THEIR TRANSPORT INTO BROWN COALS WITHIN THE ZONES OF CONTRAST JUNCTION BETWEEN SEDIMENTARY BASINS AND OROGENS USING THE ZEYA-BUREYA BASIN AND TURAN MASSIF AS AN EXAMPLE (FAR EAST, RUSSIA)

2021 ◽  
Vol 40 (5) ◽  
pp. 33-43
Author(s):  
A.P. Sorokin ◽  
◽  
N.I. Belozerov ◽  
A.A. Popov ◽  
◽  
...  

The conditions for the formation of Paleogene-Neogene metalliferous coals in a setting of tectonic movement intensification in the zone of junction between the Turan massif and Zeya-Bureya basin have been studied. The massif with the Selemdzha-Tomsk and Arkhara grabens separated by the Bureya horst and bounded by the systems of northeastern strike-slip faults was found to have a keyboard structure. The research showed that the most favorable conditions for the ore microcomponent accumulation in coals through the erosion of the Late Cretaceous ore-bearing chemical residue were within the submerged blocks of the massif. The paleodrainage system carrying microcomponents drained the grabens and the associated sedimentary sub-basins of the Zeya-Bureya basin eastern margin. Ore components were transported mainly in solution and as solid clasts to the areas of coal accumulation as evidenced by the resemblance of the elementary composition of coals in the Zeya-Bureya basin and geochemical anomalies of the Turan massif.

Author(s):  
Roey Shimony ◽  
Zohar Gvirtzman ◽  
Michael Tsesarsky

ABSTRACT The Dead Sea Transform (DST) dominates the seismicity of Israel and neighboring countries. Whereas the instrumental catalog of Israel (1986–2017) contains mainly M<5 events, the preinstrumental catalog lists 14 M 7 or stronger events on the DST, during the past two millennia. Global Positioning System measurements show that the slip deficit in northern Israel today is equivalent to M>7 earthquake. This situation highlights the possibility that a strong earthquake may strike north Israel in the near future, raising the importance of ground-motion prediction. Deep and narrow strike-slip basins accompany the DST. Here, we study ground motions produced by intrabasin seismic sources, to understand the basin effect on regional ground motions. We model seismic-wave propagation in 3D, focusing on scenarios of Mw 6 earthquakes, rupturing different active branches of the DST. The geological model includes the major structures in northern Israel: the strike-slip basins along the DST, the sedimentary basins accompanying the Carmel fault zone, and the densely populated and industrialized Zevulun Valley (Haifa Bay area). We show that regional ground motions are determined by source–path coupling effects in the strike-slip basins, before waves propagate into the surrounding areas. In particular, ground motions are determined by the location of the rupture nucleation within the basin, the near-rupture lithology, and the basin’s local structure. When the rupture is located in the crystalline basement or along material bridges connecting opposite sides of the fault, ground motions behave predictably, decaying due to geometrical spreading and locally amplified atop sedimentary basins. By contrast, if rupture nucleates or propagates into shallow sedimentary units of the DST strike-slip basins, ground motions are amplified within, before propagating outside. Repeated reflections from the basin walls result in a “resonant chamber” effect, leading to stronger regional ground motions with prolonged durations.


2005 ◽  
Vol 79 (4) ◽  
pp. 687-701 ◽  
Author(s):  
NORITOSHI SUZUKI ◽  
SATORU KOJIMA ◽  
HARUMASA KANO ◽  
SATOSHI YAMAKITA ◽  
AKIHIRO MISAKI ◽  
...  
Keyword(s):  
Far East ◽  

Author(s):  

Abstract A new distribution map is provided for Bipolaris sacchari (E.J. Butler) Shoemaker. Ascomycota: Pleosporales. Hosts: sugarcane, citronella grass (Cymbopogon citratus) and elephant grass (Pennisetum purpureum). Information is given on the geographical distribution in Europe (Italy; Madeira, Portugal; and Far East, Russia), Asia (Bangladesh; Bhutan; Cambodia; Fujian, Guangdong, Guangxi, Hong Kong, Hunan, Jiangxi, Nei Menggu, Sichuan and Yunnan, China; Andaman and Nicobar Islands, Andhra Pradesh, Assam, Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, Tamil Nadu, Uttar Pradesh and West Bengal, India; Irian Jaya, Indonesia; Iran; Israel; Japan; Peninsular Malaysia, Sabah and Sarawak, Malaysia; Myanmar; Pakistan; Philippines; Sri Lanka; Taiwan; Thailand; and Vietnam), Africa (Cameroon, Congo Democratic Republic, Egypt, Ghana, Kenya, Madagascar, Malawi, Mauritius, Mozambique, Nigeria, Reunion, Senegal, Sierra Leone, South Africa, Tanzania, Uganda, Zambia and Zimbabwe), North America (Mexico, and Alabama, Florida, Georgia, Hawaii, Louisiana and Maryland, USA), Central America and Caribbean (Antigua and Barbuda, Belize, Costa Rica, Cuba, Dominican Republic, El Salvador, Grenada, Guadeloupe, Guatemala, Haiti, Honduras, Jamaica, Martinique, Nicaragua, Panama, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Trinidad and Tobago, United States Virgin Islands and Windward Islands), South America (Argentina; Bolivia; Acre, Minas Gerais, Pernambuco and Rio Grande do Sul, Brazil; Colombia; French Guiana; Guyana; Peru; Suriname; and Venezuela) and Oceania (New South Wales and Queensland, Australia; Cook Islands; Federated States of Micronesia; Fiji; French Polynesia; New Zealand; Palau; Papua New Guinea; Samoa; Solomon Islands; and Vanuatu).


Phytotaxa ◽  
2017 ◽  
Vol 326 (2) ◽  
pp. 151
Author(s):  
XIAN-YUN MU ◽  
BING LIU ◽  
YI-XUAN ZHU ◽  
LING TONG ◽  
QIN-WEN LIN ◽  
...  

Holopogon pekinensis, a new heteromycotrophic orchid from Beijing City, China, is described and illustrated. This new species is morphologically similar to an endangered species endemic to Far East Russia, Holopogon ussuriensis Komarov & Nevski, but differs in having green flowers (vs white) and light green pubescence (vs red). Its conservation status and an identification key to Holopogon are provided.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1497-1500
Author(s):  
Li Min Chen ◽  
Hao Xu ◽  
You Fei Li

Coal is typical of sedimentary deposits, Occurrence in a coal basin. The original nearly horizontal continuous coal seam was divided into different size; different depth containing coal segment by late tectonic movement, but its scope is not affected by today's "basin" restrictions. With the concept of coal occurrence tectonic unit to reflect the current Coal Occurrence Characteristics and build a prototype coal basin types that prototype into a coal basin tectonic movement after the formation of today's coal occurrence tectonic unit. In Northwest coal hosting area, the main coal bearing strata include Carboniferous-Permian, Upper Triassic, Lower-Middle Jurassic and Lower Cretaceous, and its distribution is regular; the center and strength of coal accumulation were variation in different coal-forming period; the types of basin are multiple, including Passive Margins, Peripheral Foreland, Intracontinental Rift, Intermontane, Strike-slip pull-apart, Strike-slip pull-apart, Inter-montane; moreover, one belt and two rings constitute the tectonic framework of Northwest coal hosting area.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Pavel Kepezhinskas ◽  
Nikolai Berdnikov ◽  
Nikita Kepezhinskas ◽  
Natalia Konovalova

Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones.


Sign in / Sign up

Export Citation Format

Share Document