An environmental approach for the management and protextion of heavily irrigated regions

2013 ◽  
Vol 14 (3) ◽  
pp. 276-283

In this paper the results of a preliminary study that investigates water footprint (WF) concept, as a useful tool to address water management problems in cultivated areas are presented. The two basic methodologies reported in the literature, their applicability, benefits and challenges were previously analyzed and evaluated by Tsoukala et al. (2011). A WF calculation for the crops of Messara valley in Crete is presented, so as to examine its contribution to achieving effective agricultural policies. Messara is one of the most important agricultural regions in Greece that faces serious problems in order to meet crop irrigation demand. The conclusions drawn from this analysis showed that WF can provide a transparent framework for the identification of potentially optimal alternatives for efficient water use at river basin catchment level.

2018 ◽  
Vol 170 ◽  
pp. 04007
Author(s):  
Yuriy Vinokurov ◽  
Bella Krasnoyarova

The relevance of the study, due to the water difficult environmental situation increasing in the transboundary river basin (TRB) of Irtysh is related to the failure to address the issues of coordinated water use in the certain national segments: the Irtysh basin and its large left tributaries, the rivers Ishim and Tobol within the borders of Kazakhstan, China and Russia. The purpose of the study is to assess current processes of the water management system in the TRB formation and functioning, to identify current and potential problems of water use and to find ways to eliminate neutralize and prevent them in the future. The leading methods of research are system-dialectical, which provides for the water management systems study of the basin in question at the stage of formation, functioning and future development; as well as a comparative geographic method aimed at identifying and analyzing individual water management systems of the Irtysh TRB. Results of the study: The main water management problems in the Irtysh TBD were identified, their evaluation was determined and the their manifestation features in each of the identified national natural and economic subsystems were determined, the directions of their coordinated decision by all basin countries based on the methodology of strategic management adopted and widely implemented by the international scientific community. The significance of the study showed the severity of water management problems and the asymmetry of their solutions in different national segments of the Irtysh TRB, mainly due to incompleteness of the institutional environment for water resources management and inconsistency of the countries interests within its borders.


2020 ◽  
Author(s):  
Raj Deva Singh ◽  
Kumar Ghimire ◽  
Ashish Pandey

<p>Nepal is an agrarian country and almost one-third of Gross Domestic Product (GDP) is dependent on agricultural sector. Koshi river basin is the largest basin in the country and serves large share on agricultural production. Like another country, Nepalese agriculture holds largest water use in agriculture. In this context, it is necessary to reduce water use pressure. In this study, water footprint of different crop (rice, maize, wheat, millet, sugarcane, potato and barley) have been estimated for the year 2005 -2014 to get the average water footprint of crop production during study period. CROPWAT model, developed by Food and Agriculture Organization (FAO 2010b).</p><p>For the computation of the green and blue water footprints, estimated values of ET (the output of CROPWAT model) and yield (derived from statistical data) are utilised. Blue and green water footprint are computed for different districts (16 districts within KRB) / for KRB in different years (10 years from 2005 to 2014) and crops (considered 7 local crops). The water footprint of crops production for any district or basin represents the average of WF production of seven crops in the respective district or basin.</p><p>The study provides a picture of green and blue water use in crop production in the field and reduction in the water footprint of crop production by selecting suitable crops at different places in the field. The Crop, that has lower water footprint, can be intensified at that location and the crops, having higher water footprint, can be discontinued for production or measure for water saving technique needs to be implemented reducing evapotranspiration. The water footprint of agriculture crop production can be reduced by increasing the yield of the crops. Some measures like use of an improved variety of seed, fertilizer, mechanized farming and soil moisture conservation technology may also be used to increase the crop yields.</p><p>The crop harvested areas include both rainfed as well as irrigated land. Agricultural land occupies 22% of the study area, out of which 94% areas are rainfed whereas remaining 6% areas are under irrigation. The study shows 98% of total water use in crop production is due to green water use (received from rainfall) and remaining 2 % is due to blue water use received from irrigation (surface and ground water as source). Potato has 22% blue water proportion and contributes 85% share to the total blue water use in the basin. Maize and rice together hold 77% share of total water use in crops production. The average annual water footprint of crop production in KRB is 1248 cubic meter/ton having the variation of 9% during the period of 2005-2014. Sunsari, Dhankuta districts have lower water footprint of crop production. The coefficient of variation of water footprint of millet crop production is lower as compared to those of other crops considered for study whereas sugarcane has a higher variation of water footprint for its production.</p>


Author(s):  
V. P. Kovalchuk ◽  
P. I. Kovalchuk ◽  
M. V. Yatsyuk ◽  
R. Yu. Kovalenko ◽  
O. S. Demchuk ◽  
...  

For integrated water management in river basins in Ukraine, there is no toolkit for system modeling and selection of management structure in river basins according to environmental and economic criteria, which corresponds to the creation of water management systems under conditions of sustainable development. Therefore, the urgent task is to develop a system model of integrated water management on the example of the Ingulets River basin. The purpose of the work is to create a system model of integrated water resources management in Ingulets River basin, which provides scenario modeling of technological solutions, their evaluation and optimization of economic criteria for efficient water use under environmental constraints and criteria for achieving a good or excellent ecological status of the river basin. The system model is used as a toolkit, the method of decomposition of the river basin into subsystems, analysis of subsystems and their composition into a holistic model of integrated management by the basin principle. Telecommunication methods are proposed to improve monitoring. A method of scenario analysis is proposed, which performs simulation modeling of prospective management scenarios at the first level of the hierarchy, and at the second level - options are evaluated according to the criteria of cost-effective water use with environmental objectives and regulatory restrictions. For simulation modeling, a system of balance difference equations for the dynamics of water masses, mixing and spreading of pollution in rivers and reservoirs is formalized. A system of combined control for the impulse method of river washing was developed. Multicriteria optimization of variants of the control structure is carried out on the Pareto principle. A system model has been developed for integrated water resources management in the Ingulets River basin that meets the requirements of the EU Water Framework Directive on the establishment of cost-effective water use while ensuring good or excellent ecological status of rivers. The structural and functional diagram of the system model includes the subsystems: the water supply subsystem of the Dnipro-Ingulets canal; a subsystem for flushing the Ingulets River from the Karachunivske reservoir and displacing the saline prism into the Dnipro River; subsystem of environmental safety when discharging pollution into the river Ingulets; subsystem of water supply for irrigation in the Ingulets irrigation system, prevention of soil salinization. A system of technological, economic and environmental criteria for evaluating integrated management by the basin principle has been developed. They include maintaining the water level in reservoirs, displacement of salt water prism and limitation on water quality, ensuring the ecological condition of the river, and the dynamics of water resources consumption. Technological criteria determine the maintenance of water levels in reservoirs. Cost-effective water use is estimated on the basis of the dynamics of water consumption for river washing and irrigation. The formalized integrated management system in the Ingulets River basin includes operational water resources management and structure management. Integrated management is carried out according to subsystems, types of management and a system of criteria. For operational management the balance differential equations of water exchange in reservoirs are formalized. A two-layer model of water masses dynamics, pollutants distribution and mixing when flushing rivers from reservoirs is used. Scenario analysis is offered to select the optimal structure of the management system. Simulation scenarios are being simulated. Scenario optimization is performed on the Pareto principle. An example of evaluating the effectiveness of the proposed system and its comparison with the existing regulations for Ingulets River flushing is given.


2016 ◽  
Vol 3 (4) ◽  
pp. 771-797
Author(s):  
Anthony B. Schutz

This symposium presents an opportunity to discuss agricultural sustainability. But we have little practical understanding of what agricultural sustainability really means. This is a common problem with sustainability efforts. This Article provides one example of this problem. But it also provides a story of how an effort at defining sustainability served as a catalyst for a group of stakeholders that wanted to make improvements in water management. Understood in this way, sustainability discussions can serve to overcome historic barriers to progress that so often arise with resource management problems, especially in the agricultural sector.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 545
Author(s):  
Yu Zhao ◽  
Xuanchang Zhang ◽  
Yang Bai ◽  
Feng Mi

Research Highlights: Land use/cover change (LUCC) has an impact on the water use efficiency (WUE) of green space in the Haihe River Basin. Background and Objectives: The Haihe River Basin has historically been one of the most water-stressed basins in China. With the increase in green space and economic development, land use and water use in the Haihe River Basin have changed significantly. In order to contribute to the sustainable development of basin water management, the impacts of LUCC on the WUE of the Haihe River Basin were assessed with the goal to support decision makers with regard to water resources planning and watershed management. Materials and Methods: (1) Moderate Resolution Imaging Spectroradiometer (MODIS) data and land use data were used to produce land use/land cover and other related maps. (2) The WUE equation was used to calculate the green space WUE. (3) The contribution rates of changes in land use were assessed to illustrate how LUCC affected green space WUE. Results: (1) Artificial surfaces increased and large areas of farmland were converted to non-agricultural use, accompanied by the addition of green space. (2) Green space WUE increased significantly from 2005 to 2015. The average annual WUE exhibited a relatively uniform spatial distribution in the Haihe River Basin. Except for the central area of urban land, the WUE of most areas exhibited an increasing trend. (3) The impact of LUCC on WUE was mainly a result from the conversion of farmland and artificial surfaces and the increase in green space. Ecological restoration and crop adjustment contributed greatly to the improvement in green space WUE in the basin. Conclusions: Green space WUE of the Haihe River Basin was significantly affected by LUCC and there is room for improvement in the WUE of green spaces in the basin. The paper concludes with recommendations for further research to assist in planning for green space to promote sustainable development related to land use and water management.


Sign in / Sign up

Export Citation Format

Share Document