Development and Application of Indicators for Water Management for River Basin - Focusing on Water use and Flood

2016 ◽  
Vol 16 (2) ◽  
pp. 483-494
Author(s):  
Seung Hyub Baeck
Author(s):  
V. P. Kovalchuk ◽  
P. I. Kovalchuk ◽  
M. V. Yatsyuk ◽  
R. Yu. Kovalenko ◽  
O. S. Demchuk ◽  
...  

For integrated water management in river basins in Ukraine, there is no toolkit for system modeling and selection of management structure in river basins according to environmental and economic criteria, which corresponds to the creation of water management systems under conditions of sustainable development. Therefore, the urgent task is to develop a system model of integrated water management on the example of the Ingulets River basin. The purpose of the work is to create a system model of integrated water resources management in Ingulets River basin, which provides scenario modeling of technological solutions, their evaluation and optimization of economic criteria for efficient water use under environmental constraints and criteria for achieving a good or excellent ecological status of the river basin. The system model is used as a toolkit, the method of decomposition of the river basin into subsystems, analysis of subsystems and their composition into a holistic model of integrated management by the basin principle. Telecommunication methods are proposed to improve monitoring. A method of scenario analysis is proposed, which performs simulation modeling of prospective management scenarios at the first level of the hierarchy, and at the second level - options are evaluated according to the criteria of cost-effective water use with environmental objectives and regulatory restrictions. For simulation modeling, a system of balance difference equations for the dynamics of water masses, mixing and spreading of pollution in rivers and reservoirs is formalized. A system of combined control for the impulse method of river washing was developed. Multicriteria optimization of variants of the control structure is carried out on the Pareto principle. A system model has been developed for integrated water resources management in the Ingulets River basin that meets the requirements of the EU Water Framework Directive on the establishment of cost-effective water use while ensuring good or excellent ecological status of rivers. The structural and functional diagram of the system model includes the subsystems: the water supply subsystem of the Dnipro-Ingulets canal; a subsystem for flushing the Ingulets River from the Karachunivske reservoir and displacing the saline prism into the Dnipro River; subsystem of environmental safety when discharging pollution into the river Ingulets; subsystem of water supply for irrigation in the Ingulets irrigation system, prevention of soil salinization. A system of technological, economic and environmental criteria for evaluating integrated management by the basin principle has been developed. They include maintaining the water level in reservoirs, displacement of salt water prism and limitation on water quality, ensuring the ecological condition of the river, and the dynamics of water resources consumption. Technological criteria determine the maintenance of water levels in reservoirs. Cost-effective water use is estimated on the basis of the dynamics of water consumption for river washing and irrigation. The formalized integrated management system in the Ingulets River basin includes operational water resources management and structure management. Integrated management is carried out according to subsystems, types of management and a system of criteria. For operational management the balance differential equations of water exchange in reservoirs are formalized. A two-layer model of water masses dynamics, pollutants distribution and mixing when flushing rivers from reservoirs is used. Scenario analysis is offered to select the optimal structure of the management system. Simulation scenarios are being simulated. Scenario optimization is performed on the Pareto principle. An example of evaluating the effectiveness of the proposed system and its comparison with the existing regulations for Ingulets River flushing is given.


2013 ◽  
Vol 14 (3) ◽  
pp. 276-283

In this paper the results of a preliminary study that investigates water footprint (WF) concept, as a useful tool to address water management problems in cultivated areas are presented. The two basic methodologies reported in the literature, their applicability, benefits and challenges were previously analyzed and evaluated by Tsoukala et al. (2011). A WF calculation for the crops of Messara valley in Crete is presented, so as to examine its contribution to achieving effective agricultural policies. Messara is one of the most important agricultural regions in Greece that faces serious problems in order to meet crop irrigation demand. The conclusions drawn from this analysis showed that WF can provide a transparent framework for the identification of potentially optimal alternatives for efficient water use at river basin catchment level.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 545
Author(s):  
Yu Zhao ◽  
Xuanchang Zhang ◽  
Yang Bai ◽  
Feng Mi

Research Highlights: Land use/cover change (LUCC) has an impact on the water use efficiency (WUE) of green space in the Haihe River Basin. Background and Objectives: The Haihe River Basin has historically been one of the most water-stressed basins in China. With the increase in green space and economic development, land use and water use in the Haihe River Basin have changed significantly. In order to contribute to the sustainable development of basin water management, the impacts of LUCC on the WUE of the Haihe River Basin were assessed with the goal to support decision makers with regard to water resources planning and watershed management. Materials and Methods: (1) Moderate Resolution Imaging Spectroradiometer (MODIS) data and land use data were used to produce land use/land cover and other related maps. (2) The WUE equation was used to calculate the green space WUE. (3) The contribution rates of changes in land use were assessed to illustrate how LUCC affected green space WUE. Results: (1) Artificial surfaces increased and large areas of farmland were converted to non-agricultural use, accompanied by the addition of green space. (2) Green space WUE increased significantly from 2005 to 2015. The average annual WUE exhibited a relatively uniform spatial distribution in the Haihe River Basin. Except for the central area of urban land, the WUE of most areas exhibited an increasing trend. (3) The impact of LUCC on WUE was mainly a result from the conversion of farmland and artificial surfaces and the increase in green space. Ecological restoration and crop adjustment contributed greatly to the improvement in green space WUE in the basin. Conclusions: Green space WUE of the Haihe River Basin was significantly affected by LUCC and there is room for improvement in the WUE of green spaces in the basin. The paper concludes with recommendations for further research to assist in planning for green space to promote sustainable development related to land use and water management.


1998 ◽  
Vol 38 (11) ◽  
pp. 7-14
Author(s):  
Y. J. van Hijum

Today, many scientists and policy makers underline the importance of internalizing all social and economic costs in charges and prices for water use. Ideally, all service and environmental costs should be recovered in conformity with “polluter pays” and “user pays” principles, using the water system (or river basin) approach to detect these costs. Attempts in The Netherlands to implement these principles however, show that it is not always easy to deduct just charges and prices from hydrological cause-effect relations. Such charges and prices do not always provide adequate signals to users and polluters. The institutional framework and the social, economic and political context determine where and how these financing principles can be implemented. The focus should therefore shift from “blind” charges on pollution and abstraction to (self-)imposed efforts made to measure.


Author(s):  
V. G. Andrieiev ◽  
H. V. Hapich

Formulation of the problem. For the last 30 years, water management in the basins of small rivers in the steppe zone of Ukraine has led to a deterioration of the environmental safety in water use. The current ecological state of small rivers is close to critical, and for today some river basins are subject to catastrophic environmental changes. Almost all small rivers from 70 to 100% in the south and central water-short regions of Ukraine are under regulation due to the construction of a large number of ponds and reservoirs. In most cases, this causes a lack of transportation and low self-cleaning ability. Thus, the conservation, restoration and rational use of water, based on the principles of basin management, should get started along with the improvement of the ecosystems of small rivers.Research results. The paper describes the dynamics of changes in water management, which shows a rapid increase in the number of new ponds in the period of 1990 - 2018 almost threefold. At the same time, the overall dynamics of water consumption in the region in the same period decreased fourfold. Unjustified imbalance between the construction of new facilities and water demand was determined, as well as non-compliance with the current statutory provisions. Due to the transformation of natural watercourses into cascades of "evaporator ponds" an ecologically dangerous transformation of small river basins with the change of hydrological, hydrochemical, hydrobiological and sanitary regimes takes place. To evaluate the level of environmental hazards associated with water management, it is proposed to determine the river fragmentation coefficient, which is the ratio of the number of ponds and reservoirs to the length of the river. When evaluating the environmental hazard for rivers in a specific territory (administrative area, district or catchment area), the fragmentation coefficient is determined by the ratio of the number of ponds and reservoirs to the size of the territory. Comparative analysis indicates that Dnipropetrovsk region is one of the most environmentally dangerous in terms of the negative impact of river basins fragmentation by artificial reservoirs. The case of a small river basin (the Nyzhnia Tersa River) presents the application of the approach to evaluate the level of environmental safety associated with water management. It is proposed a mechanism for increasing the level of environmental safety in water use by observing and implementing heterogeneous groups of indicators that determine the overall efficiency of the river ecosystem functioning.Conclusions. In order to stabilize and restore the hydrological and ecological state of small rivers in the steppe zone of Ukraine, it is important to: 1) make a detailed evaluation of the compliance of the available number of ponds and small reservoirs in river basins with the requirements of the Water Code of Ukraine; 2) prove ecologically and economically the feasibility of further operation for each individual reservoir and structure; 3) develop regional programs for the elimination of ponds and reservoirs that do not fulfil their water management functions and cause environmental hazards to the functioning of the river basin ecosystem; 4) improve methodological approaches to evaluation of the environmental safety of water facilities in small river basins.


2021 ◽  
pp. 102-109
Author(s):  
I. V. GLAZUNOVA ◽  
◽  
A. O. RASIKH ◽  
N. P. KARPENKO ◽  
T. I. MATVEEVA

The article considers the issues and prospects of water use in the Kabul River basin (Afghanistan) taking into account the analysis of the current water management situation and taking into account the forecasts of the economic development compiled on the basis of the demographic data. The general scheme of water use, organization of water supply, provision of the population with water and sanitary drainage structures is presented. The analysis of the water resources use and structure of water management of Afghanistan in the Kabul river basin showed a wide use of groundwater to supply urban and rural population, livestock and irrigation while surface waters of rivers are hardly used by the population and sectors of the economy. The fulfilled analysis of the water use structure in the territory of the Kabul river basin showed that: 55% of the demand for water is provided by underground water,23% – by surface river runoff, 12% – by glacial water and 10% – by rain runoff. Comprehensive calculations based on the compilation of water management balances were carried out. Risks of water shortages and river pollution for the 2020 year and for the future until 2035 were checked for the estimated years on the provision of river fl ow of the Kabul River by 74% and 95%. A set of water management, water protection and management measures has been developed and recommended to prevent and eliminate the identified possible negative trends in water use. The analysis of the quality of water resources in Afghanistan was carried out which showed that the situation with water resources in the country has been noticeably improving in recent years.


2005 ◽  
Vol 10 (6) ◽  
pp. 769-799 ◽  
Author(s):  
JINXIA WANG ◽  
ZHIGANG XU ◽  
JIKUN HUANG ◽  
SCOTT ROZELLE

The overall goal of our paper is to better understand water management reform in China's rural communities, especially focusing on the effect that improving incentives to water managers will have on the nation's water resources and the welfare of the rural population. To pursue this goal, the paper has three objectives. First, we track the evolution of water management reform and seek to identify the incentive mechanisms that encourage water managers to more efficiently use water. Second, we identify the impact on crop water use of the incentives provided to water managers during reform. Since we are also interested in the possible negative consequences of an incentive-led water management reform strategy, the paper also explores how changes in incentives also affect agricultural production, farmer income, and poverty. Based on a random sample of 51 villages, 189 farmers, and 378 plots in four large irrigation districts in Ningxia and Henan provinces, both provinces in China's Yellow River Basin, our results show that in our sample areas the two main forms of water management reform, Water User Associations and contracting, have begun to systematically replace traditional forms of collective management. Our analysis demonstrates, however, that it is not the nominal implementation of the reform that matters, but rather it is the creation of new management institutions that offer water managers monetary incentives that lead to water savings. Importantly, given China's concerns about national food production and poverty alleviation, the reductions in water, at least in our sample sites, do not lead to reductions in either production or income, and do not increase the incidence of poverty.


2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Sign in / Sign up

Export Citation Format

Share Document