scholarly journals Well-posedness of the Cauchy problem for system of oscillators on 2D–lattice in weighted $l^2$-spaces

2021 ◽  
Vol 56 (2) ◽  
pp. 176-184
Author(s):  
S.M. Bak ◽  
G. M. Kovtonyuk

We consider an infinite system of ordinary differential equations that describes the dynamics of an infinite system of linearly coupled nonlinear oscillators on a two dimensional integer-valued lattice. It is assumed that each oscillator interacts linearly with its four nearest neighbors and the oscillators are at the rest at infinity. We study the initial value problem (the Cauchy problem) for such system. This system naturally can be considered as an operator-differential equation in the Hilbert, or even Banach, spaces of sequences. We note that $l^2$ is the simplest choice of such spaces. With this choice of the configuration space, the phase space is $l^2\times l^2$, and the equation can be written in the Hamiltonian form with the Hamiltonian $H$. Recall that from a physical point of view the Hamiltonian represents the full energy of the system, i.e., the sum of kinetic and potential energy. Note that the Hamiltonian $H$ is a conserved quantity, i.e., for any solution of equation the Hamiltonian is constant. For this space, there are some results on the global solvability of the corresponding Cauchy problem. In the present paper, results on the $l^2$-well-posedness are extended to weighted $l^2$-spaces $l^2_\Theta$. We suppose that the weight $\Theta$ satisfies some regularity assumption. Under some assumptions for nonlinearity and coefficients of the equation, we prove that every solution of the Cauchy problem from $C^2\left((-T, T); l^2)$ belongs to $C^2\left((-T, T); l^2_\Theta\right)$. And we obtain the results on existence of a unique global solutions of the Cauchy problem for system of oscillators on a two-dimensional lattice in a wide class of weighted $l^2$-spaces. These results can be applied to discrete sine-Gordon type equations and discrete Klein-Gordon type equations on a two-dimensional lattice. In particular, the Cauchy problems for these equations are globally well-posed in every weighted $l^2$-space with a regular weight.

2019 ◽  
Vol 16 (4) ◽  
pp. 465-476 ◽  
Author(s):  
Sergiy Bak

We consider an infinite system of ordinary differential equations that describes the dynamics of an infinite system of linearly coupled nonlinear oscillators on a two-dimensional integer-valued lattice. We prove a result on the existence and uniqueness of global solutions of the Cauchy problem for such systems with power potentials. Moreover, a result on the nonexistence of global solutions is obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Jiecheng Chen ◽  
Dashan Fan ◽  
Lijing Sun ◽  
Chunjie Zhang

It is known that the unimodular Fourier multiplierseit|Δ|α/2,α>0,are bounded on all modulation spacesMp,qsfor1≤p,q≤∞. We extend such boundedness to the case of all0<p,q≤∞and obtain its asymptotic estimate astgoes to infinity. As applications, we give the grow-up rate of the solution for the Cauchy problems for the free Schrödinger equation with the initial data in a modulation space, as well as some mixed norm estimates. We also study theMp1,qs→Mp2,qsboundedness for the operatoreit|Δ|α/2, for the case0<α≤2andα≠1.Finally, we investigate the boundedness of the operatoreit|Δ|α/2forα>0and obtain the local well-posedness for the Cauchy problem of some nonlinear partial differential equations with fundamental semigroupeit|Δ|α/2.


2019 ◽  
Vol 18 (03) ◽  
pp. 469-522
Author(s):  
Wei Yan ◽  
Yongsheng Li ◽  
Jianhua Huang ◽  
Jinqiao Duan

The goal of this paper is three-fold. First, we prove that the Cauchy problem for a generalized KP-I equation [Formula: see text] is locally well-posed in the anisotropic Sobolev spaces [Formula: see text] with [Formula: see text] and [Formula: see text]. Second, we prove that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text]. Finally, we show that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text] Our result improves the result of Saut and Tzvetkov [The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. 79 (2000) 307–338] and Li and Xiao [Well-posedness of the fifth order Kadomtsev–Petviashvili-I equation in anisotropic Sobolev spaces with nonnegative indices, J. Math. Pures Appl. 90 (2008) 338–352].


10.53733/161 ◽  
2021 ◽  
Vol 51 ◽  
pp. 119-130
Author(s):  
Baoquan Yuan ◽  
Panpan Zhang

This paper focus on the Cauchy problem of the 3D incompressible magneto-micropolar equations with fractional dissipation in the Sobolev space. Liu, Sun and Xin obtained the global solutions to the 3D magneto-micropolar equations with $\alpha=\beta=\gamma=\frac{5}{4}$. Deng and Shang established the global well-posedness of the 3D magneto-micropolar equations in the case of $\alpha\geq\frac{5}{4}$, $\alpha+\beta\geq\frac{5}{2}$ and $\gamma\geq2-\alpha\geq\frac{3}{4}$. In this paper, we establish the global well-posedness of the 3D magneto-micropolar equations with $\alpha=\beta=\frac{5}{4}$ and $\gamma=\frac{1}{2}$, which improves the results of Liu-Sun-Xin and Deng-Shang by reducing the value of $\gamma$ to $\frac{1}{2}$.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


2020 ◽  
Vol 10 (1) ◽  
pp. 353-370 ◽  
Author(s):  
Hans-Christoph Grunau ◽  
Nobuhito Miyake ◽  
Shinya Okabe

Abstract This paper is concerned with the positivity of solutions to the Cauchy problem for linear and nonlinear parabolic equations with the biharmonic operator as fourth order elliptic principal part. Generally, Cauchy problems for parabolic equations of fourth order have no positivity preserving property due to the change of sign of the fundamental solution. One has eventual local positivity for positive initial data, but on short time scales, one will in general have also regions of negativity. The first goal of this paper is to find sufficient conditions on initial data which ensure the existence of solutions to the Cauchy problem for the linear biharmonic heat equation which are positive for all times and in the whole space. The second goal is to apply these results to show existence of globally positive solutions to the Cauchy problem for a semilinear biharmonic parabolic equation.


Sign in / Sign up

Export Citation Format

Share Document