scholarly journals Effect of T-2 toxin on the activity of antioxidant enzymes and processes of lipid peroxidation in red blood cells of rats

2013 ◽  
Vol 7 (3) ◽  
pp. 59-66
Author(s):  
O. Fedyakova ◽  
◽  
I. Kotsyumbas ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 785-798
Author(s):  
Yahiaoui Zidan ◽  
Sherazede Bouderbala ◽  
Cherrad Hayet ◽  
Bouchenak Malika

Purpose The purpose of this study is to determine the effect of olive cake (OC) on lipid peroxidation as well as antioxidant enzymes activities of serum, red blood cells (RBCs) and liver, in streptozotocin (STZ)-induced-diabetic rat fed cholesterol-enriched diet. Design/methodology/approach Hypercholesterolemic male rats were rendered diabetic (HC-D) by a single intraperitoneal injection dose of STZ (35 mg/kg BW). HC-D rats were divided into two groups fed for 28d a diet supplemented with OC at 7.5 percent (HC-D-OC) or not (HC-D). A control group (C) was submitted to standard diet containing 20 per cent casein for the same experimental period. Findings RBCs, serum and liver thiobarbituric acid reactive substances (TBARS) contents were significantly increased in HC-D, compared to C group (p = 0.04, p = 0.02 and 0.03). These values were significantly decreased (48 per cent and 64 per cent; p = 0.02 and p = 0.0007) in serum and liver of HC-D-OC vs HC-D group. In RBCs, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activities were, respectively, 1.5, 2- and 1.7-fold higher (p = 0.03, p = 0.008 and p = 0.03) in HC-D group compared to HC group. In serum and liver, SOD, CAT and GST activities were, respectively, 1.3-, 2.6- and 1.6-fold increased (p = 0.03, p = 0.007 and p = 0.02). In HC-D-OC compared to HC-D group, RBCs glutathione peroxidase (GSH-Px), CAT and GST activities were, respectively, 2.1-, 3.3- and 2.1-fold higher (p = 0.04, p = 0.0009 and p = 0.03). In serum, SOD and CAT activities were, respectively, 1.5- and 1.9-fold increased (p = 0.02, p = 0.02). In liver, SOD, GSH-PX, CAT and GST activities were significantly increased (p = 0.005, p = 0.03, p = 0.02 and p = 0.04). Originality/value In diabetic rats-fed cholesterol-enriched diet, OC was able to reduce oxidative stress by decreasing lipid peroxidation and increasing antioxidant enzymes activities in serum, RBCs and liver.


1987 ◽  
Vol 60 (1-3) ◽  
pp. 163-166 ◽  
Author(s):  
Hermann Einsele ◽  
Michael R. Clemens ◽  
Herbert Remmer

1988 ◽  
Vol 249 (1) ◽  
pp. 63-68 ◽  
Author(s):  
G D Buffinton ◽  
N H Hunt ◽  
W B Cowden ◽  
I A Clark

Reversed-phase h.p.l.c. was used to detect 2,4-dinitrophenylhydrazine-reactive carbonyl products, which excludes malonaldehyde, in malaria-parasite (Plasmodium vinckei)-infected murine red blood cells (RBCs). A number of alkanals, 4-hydroxyalk-2-enals and alka-2,4-dienals were tentatively identified by comparison with authentic standards. The formation of 4-hydroxynon-2-enal, deca-2,4-dienal and hexanal was greater in P. vinckei-infected RBCs than in their uninfected counterparts and was increased by the presence of t-butyl hydroperoxide. Several of these aldehydes have previously been shown to be toxic to various types of cells, including P. falciparum, in vitro. The iron chelator desferrioxamine and the free-radical scavenger butylated hydroxyanisole inhibited the formation of these aldehydes. These experiments demonstrate that products of lipid peroxidation other than malonaldehyde are formed during the exposure of malaria-infected RBCs in vitro to drugs that generate reactive oxygen species and have anti-parasitic activity. The formation of products of this type during the natural course of malaria infection may have implications for the mechanisms underlying intra-RBC parasite death and the tissue damage associated with the disease.


Sign in / Sign up

Export Citation Format

Share Document