scholarly journals Modern methods of grain size distribution of soils

Author(s):  
Volodymyr Radzii

Grain size distribution of soil determines much of water and physical properties of the soil mass. However, it defines ecological functions and morphological memory of soils in the study of their genesis, evolution and use. This article describes the main methods of particle size analysis and suggests the modern methods used increasingly in the research in soil science, geology, chemical, pharmaceutical and other industries. Key words: particle size distribution of soil, sedimentograph, laser diffraction.

2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

<p>Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R > 0.62, R<sup>2</sup>>0.30, p<0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R<0.03, R<sup>2</sup>=0.00, p>0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p<0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.</p><p> </p>


Author(s):  
Lawrence J. Czerwonka ◽  
Jack M. Carey

A general purpose centrifuge method for measuring particle-size distribution of air-filter inlet, outlet and catch dust samples is demonstrated. Treatment and analysis of data to determine air-cleaner performance based on size distribution is shown for two types of air filters, a louver and a glass-fiber media filter. The advantages and limitations of the method and interpretations of results associated with the application of these procedures for arriving at efficiency versus particle-size performance curves, and for predicting filter efficiency for any given dust are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Songhao Shang

Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.


2002 ◽  
Vol 740 ◽  
Author(s):  
Gopinath Mani ◽  
Qinguo Fan ◽  
Samuel C. Ugbolue ◽  
Isabelle M. Eiff

ABSTRACTThis research work focuses on combining ball milling and ultrasonication to produce nano-size clay particles. Our work also emphasizes on increasing the specific surface area of montmorillonite clay particles by reducing the particle size to nanometer dimensions. We have characterized the as-received clay particles by using particle size analysis based on laser diffraction and found that the size of the clay particles is not consistent and the particle size distribution is very broad. However, after the unique treatment and processing, the clay particles were obtained in nanometer dimensions with narrowed particle size distribution.


2021 ◽  
pp. 57-93
Author(s):  
Noor Al-Dousari ◽  
Modi Ahmed ◽  
Ali Al-Dousari ◽  
Musaad Al-Daihani ◽  
Murahib Al-Elaj

AbstractGrain ‘size’ can be specified and measured in several different ways. All methods of grain size determination have blemishes, and the choice of the most appropriate method is governed by the nature of the sample and the use to which the data are placed. Four main methods are currently used for size analysis of sands: (a) sieving; (b) settling tube analysis; (c) electro-optical methods, including Coulter Counter analysis and laser granulometry; and (d) computerized image analysis. The classification of the particle size distribution of Kuwait dust was mapped according to the parameters proposed by Folk And Ward (1957) which were widely used for quantitative comparisons between natural grain size distribution and the lognormal distribution that shows better sorted sediments have lower values of σ1. Maps of the distribution of dust in Kuwait were obtained that included: fine sand (F.S.), Coarse sand (C.S), Medium Sand (M.S), Very Fine Sane (V.F.S), Very Coarse Silt (V.C.Silt), Coarse Silt (C.Silt), Medium Silt (M.Silt), Fine Silt (F.Silt), Very Fine Silt (V.F.Silt), in addition to that, the deposition percentage of Clay, Sand, mud (silt plus clay) and silt were provided.


Author(s):  
J. Abutu ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
R.A. Lafia-Araga ◽  
A.S. Abdulrahman

In this study, locally sourced natural materials (coconut shells and seashells) were used separately to produce composites. The powders were sieved with sieve size of 10 µm and characterized using a particle size analyser (DLS) in order to ascertain their particle size distribution. Also, the effects of particle size distribution on the performance of sourced coconut shells and seashells-based composite was investigated. About 52% of the characterized powder was afterward used along with other ingredients (35% binder, 8% alumina and 5% graphite) to produced composites using moulding pressure (14 MPa), moulding temperature (160 ºC), curing time (12 min) and heat treatment time (1 hr). The performance of the composites was thereafter evaluated using standard testing procedures. The results of particle size analysis indicated that the seashell powder (0.27) possesses lower distribution width (PDI) compared to the coconut shell powder (0.342) while the coconut shell (542.3 nm) showed lower Z-average diameter compared to the seashell powder (1096 nm) with some little traces of nanoparticles (<10 µm). Also, the experimental results obtained from composite characterization indicated that the coconut shell-based samples exhibited better performance in terms of its mechanical and tribological properties compared to the seashell-based samples.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-14
Author(s):  
N. Sahu ◽  
◽  
R. K. Duchaniya ◽  

The ZnO-CdO nanocomposite was prepared by sol-gel method by using their respective nitrates. It is a simple and low cost method to prepare nanocomposites. The drying temperature and drying period of prepared gel was varied during the synthesis process. The prepared samples were characterized by using scanning electron microscope (SEM), particle size analysis (PSA), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL) to get surface morphology, idea of getting particle of nanosized range so that further characterizations can be done, to study the optical property of synthesized nanocomposite and measure the band gap . The grain size determined by Scherrer’s formula was found to be between 30-50 nm.


Sign in / Sign up

Export Citation Format

Share Document