scholarly journals Determination of tangential properties of a single pneumatic tire in the vehicle braking mode of a vehicle

Author(s):  
Valeriy Klimenko ◽  
Denis Kapski ◽  
Dmytro Leontiev ◽  
Oleksandr Kuripka ◽  
Andrii Frolov

Problem. In the event of circumstances that may cause a traffic accident (accident), drivers apply emergency braking, which usually leads to the blocking of car wheels and the formation on the road surface of track information from pneumatic tires. If automated brake force control systems are installed in the brake actuator of the vehicle, the tracking information from the pneumatic tires may be absent or weak, and the braking efficiency of the wheeled vehicle will depend on the angular deformation of the tire relative to the road surface, which in turn is limited. coupling properties in the contact spot "tire-road surface". Goal. The aim of the work is to improve the method of determining the angle of twist of the pneumatic tire of a single car wheel in the mode of its braking by taking into account the effects of the coefficient of friction-sliding on roads with high traction. Methodology the peculiarities of twisting the pneumatic tire of a car wheel with a single busbar in the mode of vehicle braking on roads with low and high coefficient of friction - sliding are considered. The analysis of the model of dynamic change of the tire twist angle depending on the sliding of the tire tread elements in the spot of contact with the road surface is performed, and the results of simulation modeling are obtained, which are confirmed by experimental experiments. Originality. An empirical dependence is proposed, which takes into account the nature of the decrease in the value of the angle of twist of the tire on roads with high traction properties. Practical value. The obtained results of simulation modeling according to the proposed dependence determine that the highest indicators of torsional rigidity of the pneumatic tire are reached at a tire pressure of 0.8 MPa and a vertical load on it of about 2.6 104 N.

2021 ◽  
pp. 100077
Author(s):  
Samim Mustafa ◽  
Hidehiko Sekiya ◽  
Aya Hamajima ◽  
Iwao Maeda ◽  
Shuichi Hirano

Author(s):  
A. Fihani ◽  
Hasyim Hasyim ◽  
I.D.M.A. Karyawan

The Street-Race Circuit is being built in the Mandalika Tourism Special Economic Zone (KEK), Central Lombok, West Nusa Tenggara. The construction is targeted to be completed, before the MotoGP event on this circuit is implemented in 2021. One of the infrastructure related to this, which also really needs to be built to support the smooth running of the 2021 MotoGP is the development of access to the circuit location. The analysis carried out includes the calculation of heavy equipment productivity. Heavy equipment productivity is determined based on cycle times, production per hour, number of heavy equipment used, the amount of operating costs per hour. The analysis was carried out for the road surface layer work, namely the Asphalt Concrete Base Course (AC-BC) work. Based on the results of the analysis, it was found that the production for 1 unit of asphalt mixing plant (AMP) was 49.80 tons/hour and 9 units of dump trucks were 2.34 tons/hour. The spreader using the asphalt finisher can spread 109.18 tons/hour. As for the compactor, which is 18.55 tons/hour for 2 units of tandem rollers and 27.47 tons/hour for 1 unit of pneumatic tire roller. Other equipment is 9.96 m2/hour for air compressor and 2.74 liter/hour for asphalt sprayer. Meanwhile, in the Asphalt Concrete Wearing Course (AC-WC) work, several tools have the same productivity as the AC-BC job, namely asphalt mixing plant, air compressor and asphalt sprayer. Meanwhile, 13 units of Dump Trucks amounted to 2,338 tons/hour, 1 unit of asphalt finisher of 72,787 tons/hour, 3 units of tandem rollers of 12,367 tons/hour, and 1 unit of pneumatic tire roller of 18.31 tons/hour. The total cost of using heavy equipment for road surface layer work is Rp. 4,967,657,344. The total cost based on the contract document is Rp. 5,042,082,622. So that there is a difference in costs of Rp. 74,425,278.


2018 ◽  
Vol 1 (3) ◽  
pp. 667-678
Author(s):  
Mulyadi Mulyadi ◽  
Muhammad Isya ◽  
Sofyan M. Saleh

Abstract: Blangkejeren - Lawe Aunan road conditions overall is on the slopes of the mountains which is strongly influenced by local environmental factors such as drainage, topography, soil conditions, material conditions and vehicle load conditions across the road. It should be noted in order to avoid a decrease in the road quality due to road surface damage that can affect the traffic safety, comfort and smoothness.. Therefore, it is necessary to study the evaluation of the condition of the damaged road surface and the local factors that affect the damage in order to avoid a decrease in the roads quality. This study took place on Blangkejeren - Lawe Aunan roads started from Sta. 529 + 700 - Sta. 535 + 206. Generally, the condition of roads in this segment were found damage that disturb the comfort, smoothness and safety of the roads users. In this study, the primary data obtained by actual surveys in the form of data field length, width, area, and depth of each type of damage as well as local factors that lead to such damage. Actual field surveys conducted along the 5.506 km, with the distance interval of each segment is 100 m. The secondary data obtained from the relevant institutions and other materials related to this research. This study analyzed the PCI method (Pavement Condition Index) to obtain the level of damage in order to know how to handle, while for the identification of the damage done by observation factors descriptively appropriate observation in the field such as the number of damage points. The results of this study found that the type of damage caused to roads is damage to the cover layer, a hole, and curly. This type of damage that commonly occurs on the road Blangkejeren - Lawe Aunan is damage to the edges with a percentage of 87.30%. The local factors that greatly affect drainage on the percentage of damage is 62.00%. PCI average value is 13.47 which indicates a very bad condition (very poor) and requires maintenance or improvement of reconstruction.Abstrak: Kondisi jalan Blangkejeren – Lawe Aunan secara keseluruhan berada di lereng pegunungan sangat dipengaruhi oleh faktor lingkungan setempat seperti drainase, topografi, kondisi tanah, kondisi material dan kondisi beban kendaraan yang melintasi jalan tersebut. Hal ini perlu diperhatikan agar tidak terjadi penurunan kualitas jalan akibat kerusakan permukaan jalan sehingga dapat mempengaruhi keamanan, kenyamanan, dan kelancaran dalam berlalu lintas. Oleh karena itu, perlu dilakukan penelitian evaluasi terhadap kondisi permukaan jalan yang mengalami kerusakan serta faktor setempat yang mempengaruhi kerusakan tersebut agar tidak terjadi penurunan kualitas jalan. Penelitian ini mengambil lokasi di ruas jalan Blangkejeren – Lawe Aunan yang dimulai dari Sta. 529+700 - Sta. 535+206. Umumnya kondisi ruas jalan pada segmen ini banyak ditemukan kerusakan-kerusakan yang dapat mengganggu kenyamanan, kelancaran, dan keamanan pengguna jalan. Dalam penelitian ini data primer diperoleh dengan melakukan survei aktual lapangan yaitu berupa data panjang, lebar, luasan, dan kedalaman tiap jenis kerusakan serta faktor setempat yang mengakibatkan kerusakan tersebut. Survei aktual lapangan dilakukan sepanjang 5,506 km, dengan jarak interval setiap segmen adalah 100 m. Adapun data sekunder diperoleh dari lembaga terkait dan bahan lainnya yang berhubungan dengan penelitian ini. Penelitian ini dianalisis dengan metode PCI (Pavement Condition Index) untuk mendapatkan tingkat kerusakan agar diketahui cara penanganannya, sedangkan untuk identifikasi faktor kerusakannya dilakukan dengan pengamatan secara diskriptif sesuai hasil pengamatan di lapangan berupa jumlah titik kerusakan. Hasil penelitian ini didapatkan bahwa jenis kerusakan yang terjadi pada ruas jalan adalah kerusakan lapisan penutup, lubang, dan keriting. Jenis kerusakan yang umum terjadi pada ruas jalan Blangkejeren – Lawe Aunan adalah kerusakan tepi dengan persentase 87,30 %. Faktor setempat yang sangat mempengaruhi kerusakan adalah drainase dengan persentase 62,00%. Nilai PCI rata-rata yaitu 13,47 yang menunjukkan kondisi sangat buruk (very poor) dan memerlukan pemeliharaan peningkatan atau rekonstruksi.


2009 ◽  
Vol 48 (12) ◽  
pp. 2513-2527 ◽  
Author(s):  
L. Bouilloud ◽  
E. Martin ◽  
F. Habets ◽  
A. Boone ◽  
P. Le Moigne ◽  
...  

Abstract A numerical model designed to simulate the evolution of a snow layer on a road surface was forced by meteorological forecasts so as to assess its potential for use within an operational suite for road management in winter. The suite is intended for use throughout France, even in areas where no observations of surface conditions are available. It relies on short-term meteorological forecasts and long-term simulations of surface conditions using spatialized meteorological data to provide the initial conditions. The prediction of road surface conditions (road surface temperature and presence of snow on the road) was tested at an experimental site using data from a comprehensive experimental field campaign. The results were satisfactory, with detection of the majority of snow and negative road surface temperature events. The model was then extended to all of France with an 8-km grid resolution, using forcing data from a real-time meteorological analysis system. Many events with snow on the roads were simulated for the 2004/05 winter. Results for road surface temperature were checked against road station data from several highways, and results for the presence of snow on the road were checked against measurements from the Météo-France weather station network.


Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Mitsugu Kaneko

When agricultural machines are operated on pavements, the vibration and noise caused by the interaction between the tire lugs and the road surface are inevitable. In conventional studies, it is considered that the dynamic behavior of a rolling agricultural tire is influenced by the vibration characteristics of the tire. Resonance occurs when the lug excitation frequency of the tire, which is defined as the lug number multiplied by the number of revolutions of the tire, becomes equal to the natural frequency of the tire. In other words, the rolling tire shows large vibrations in the direction of the natural mode corresponding to the natural frequency of the tire. However, in the conventional equipment, the diameter of the drum is smaller than that of the tire. Therefore, the real running condition on the road was not realized by the rolling test using the conventional equipment. In this study, a new equipment is produced to realize the running condition in the rolling test. The dynamic and vibratory characteristics of operating agricultural machine are investigated by using this new equipment. The obtained results are compared to the conventional ones and the influence of the running condition on dynamic characteristics of rolling tire is investigated.


Author(s):  
Veli-Pekka Kallberg

An experiment was conducted in the road district of Kuopio in the winters of 1992–1993 and 1993–1994 in which the use of salt in winter maintenance on rural main roads was reduced to 1 to 2 T/road kilometer from the approximately 10 T of salt that typically had been used per road kilometer in similar conditions in recent years. On the experimental roads, salting was replaced by sanding. The cost of winter maintenance on the experimental roads increased by 20 percent on average, and the increase was higher on roads with higher traffic volumes. Slippery conditions due to ice and snow on the road surface were twice as frequent (30 to 40 percent of the time) on the experimental roads as on the control roads in the neighboring road district. There were 27 injury accidents on the experimental roads in the first winter and 25 in the second. This was about the same as the average of the five previous winters. Because the accident trend on other roads in the same time was decreasing, it was concluded that the experiment increased the number of injury accidents by approximately 20 percent on most experimental road sections. Reduced salting decreased the sodium and chloride concentrations in the needles of roadside pine trees. There were also indications of decreased sodium and chloride concentrations in groundwater. Three quarters of the population in the area was pleased with the experiment.


2020 ◽  
Author(s):  
V.YU. Pankov ◽  
A.V. Potapov
Keyword(s):  
The Road ◽  

2020 ◽  
Vol 21 (1) ◽  
pp. 441-451
Author(s):  
A. Frolov ◽  
O. Shabratko

The sequence of carrying out of researches of tires of a freight vehicle on the basis of expert practice is considered. The research of tires of a truck has been conducted, an example of an expert research of tires is resulted, as a result of which the causes of damage of tires were established. The tire connects the vehicle to the road, perceives its weight, braking effort and dynamic impact that arises due to the roughness of the road surface. It is not uncommon for the vehicle to operate even on roads with a satisfactory road surface and damage to the tires. Damage to the tires can be generated as a result of industrial damage (factory defect) and as a result of operational damage. The most common and serious cause of premature wear and damage to tires is non-compliance with the established air pressure norms and overload tires. Changing the configuration of the profile and increasing the deformation of the bus cause an increase in the voltage in its material. As a result, it increases its premature wear. At increased load (overload) the tension voltage in the places of contact of the tire with the road increases and its specific pressure on the road, from which the tread wears away more quickly. Overvoltage in the material and increase in deformation is accompanied by a general increase in friction and heat formation in the tire. At increased load (overload) the tension voltage in the places of contact of the tire with the road increases and its specific pressure on the road, from which the tread wears away more quickly. Overvoltage in the material and increase in deformation is accompanied by a general increase in friction and heat formation in the tire. In the course of the research it was established that the tires Satoya SD 062-III have operational damage, the detects damage to the tires was formed as a result of their operation, which could contribute to vehicle overload, non compliance with tire pressure and the movement of the vehicle on roads with improper road surface. External inspection the examination of Satoya SD 062-III tires showed no signs of industrial damage (factory defects).


Author(s):  
Anitha Kumari Dara ◽  
Dr. A. Govardhan

The growth in the road networks in India and other developing countries have influenced the growth in transport industry and other industries, which depends on the road network for operations. The industries such as postal services or mover services have influenced the similar growths in these industries as well. However, the dependency of these industries is high on the road surface conditions and any deviation on the road surface conditions can also influence the performance of the services provided by the mentioned services. Nonetheless, the conditions of the road surface are one of the prime factors for road safety and number of evidences are found, which are discussed in subsequent sections of this work, that the bad road surface conditions are increasing the road accidents. Several parallel research attempts are deployed in order to find out, the regions where the road surface conditions are not proper, and the traffic density is higher. Nevertheless, outcomes of these parallel works are highly criticised due to the lack of accuracy in detection of the road surface defects, detection of accurate location of the defects and detection of the traffic density data from various sources. Thus, this work proposes a novel framework for detection of the road defect and further mapping to the spatial data coordinates resulting into the detection of the accident-prone zones or accident affinities of the roads. This work deploys a self-adjusting parametric coefficient-based regression model for detection of the risk factors of the road defects and in the other hand, extracts the traffic density of the road regions and further maps the accident affinities. This work outcomes into 97.69% accurate detection of the road accident affinity and demonstrates less complexity compared with the other parallel research outcomes


Author(s):  
A. I. Solodkiy ◽  
◽  
N. V. Chernikh ◽  

The paper considers the problem of improving the level of road traffic services. The level of service for various categories of city streets in practice does not correspond to the values given in normative legal documents. Therefore, the task of increasing the level of service to the indicated values on the road network is urgent. Herewith, it is important to specify the object of improvement, namely, the basic street-road network, through which the bulk of the transportation correspondence is implemented, since it is there that the greatest loss of the user time occurs. An effective tool in this work is the development of a set of measures using simulation modeling aimed at improving the level of traffic services on the street-road network.


Sign in / Sign up

Export Citation Format

Share Document