IMPROVING THE ENERGY EFFICIENCY OF ELECTRIC VEHICLES

Author(s):  
Pavel Tatuyko ◽  
Galina Fedyaeva ◽  
A. Bezzubenko

Advantages of hybrid and fully electric vehicles is a functional block diagram of the power supply system of an Autonomous vehicle, considered ways to improve the energy efficiency of electric vehicles, the results of modeling the energy performance of the half-bridge LLC resonant Converter with serial resonant circuit.

2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Arslan Arif ◽  
Junaid Arshad ◽  
Shahid Iqbal

Technological advancements in solar power systems necessitate highly reliable power inverters with a high efficiency and a small size. An LLC resonant converter-based pseudo Direct Current (DC) link inverters offer these qualities to some extent. The resonant circuits of conventional pseudo DC link inverters lack the ability to attain a zero gain and cannot handle variable frequency control which in turn requires very large filters to produce pure sinusoidal output voltages for grid. The usage of these filters consequences in the enhanced price and size of inverters; moreover, the reliability of inverters is also reduced. We propose a novel topology for a pseudo DC link inverter based on an LLCLC resonant converter. The proposed inverter does not require large filters, because it generates rectified sinusoidal output voltages. An additional parallel LC component is added in series to the resonant circuit, which makes it able to attain a zero gain through an infinite circuit impedance. The 400 W pseudo DC link inverter with a 40 V input and a 400 V output is designed and simulated on OrCAD PSpice software. The results showed that there is a significant improvement in achieving a zero gain. The possible lowest gain achieved is approximately 0.125. The proposed technique attested to be more efficient than those formerly used, subsequently contributing satisfying outcomes.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 370 ◽  
Author(s):  
Bor-Ren Lin ◽  
Chu-Xian Dai

This paper presents a inductor–inductor–capacitor (LLC) resonant converter with variable winding turns to achieve wide voltage operation (100–400 V) and realize soft switching operation over the entire load range. Resonant converters have been developed for consumer power units in computers, power servers, medical equipment, and adaptors due to the advantages of less switching loss and better circuit efficiency. The main disadvantages of the LLC resonant converter are narrow voltage range operation owing to wide switching frequency variation and limited voltage gain. For computer power supplies with hold-up time function, electric vehicle battery chargers, and for power conversion in solar panels, wide input voltage or wide output voltage operation capability is normally demanded for powered electronics. To meet these requirements, the variable winding turns are used in the presented circuit to achieve high- or low-voltage gain when Vin is at low- or high-voltage, respectively. Therefore, the wide voltage operation capability can be implemented in the presented resonant circuit. The variable winding turns are controlled by an alternating current (AC) power switch with two back-to-back metal-oxide-semiconductor field-effect transistors (MOSFETs). A 500-W prototype is implemented and test results are presented to confirm the converter performance.


2021 ◽  
Vol 246 ◽  
pp. 633-639
Author(s):  
Vyacheslav Voronin ◽  
Fedor Nepsha

 This paper considers the problem of electric drive of shearers simulation to assess the indicators of power supply system (PSS) energy efficiency in the context of the introduction of modern devices for controlling the flow of electricity and power. The block diagram of the shearer electric drive simulation model is presented. To take into account fluctuations in the level of consumption of active and reactive power, a model of the executive body of the shearer was used in the work, including a model of the moment of resistance on the auger when cutting. As a result, in the MATLAB Simulink environment, a simulation model of the electric drive of the UKD300 shearer was developed, suitable for assessing the energy efficiency of the electrical complex of mining areas and the feasibility of using modern devices for controlling the flow of electricity and power. As a result of the simulation, it was found that a significant irregularity in the graph of reactive power consumption, caused by repeated short-term operation, makes the use of capacitor units ineffective to compensate for reactive power. 


Sign in / Sign up

Export Citation Format

Share Document