scholarly journals Wide Voltage Resonant Converter Using a Variable Winding Turns Ratio

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 370 ◽  
Author(s):  
Bor-Ren Lin ◽  
Chu-Xian Dai

This paper presents a inductor–inductor–capacitor (LLC) resonant converter with variable winding turns to achieve wide voltage operation (100–400 V) and realize soft switching operation over the entire load range. Resonant converters have been developed for consumer power units in computers, power servers, medical equipment, and adaptors due to the advantages of less switching loss and better circuit efficiency. The main disadvantages of the LLC resonant converter are narrow voltage range operation owing to wide switching frequency variation and limited voltage gain. For computer power supplies with hold-up time function, electric vehicle battery chargers, and for power conversion in solar panels, wide input voltage or wide output voltage operation capability is normally demanded for powered electronics. To meet these requirements, the variable winding turns are used in the presented circuit to achieve high- or low-voltage gain when Vin is at low- or high-voltage, respectively. Therefore, the wide voltage operation capability can be implemented in the presented resonant circuit. The variable winding turns are controlled by an alternating current (AC) power switch with two back-to-back metal-oxide-semiconductor field-effect transistors (MOSFETs). A 500-W prototype is implemented and test results are presented to confirm the converter performance.

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1982
Author(s):  
Oscar Miguel Rodríguez-Benítez ◽  
Mario Ponce-Silva ◽  
Juan Antonio Aquí-Tapia ◽  
Abraham Claudio-Sánchez ◽  
Luis Gerardo Vela-Váldes ◽  
...  

This paper focuses on the main reasons of low efficiency in a current-fed DC-DC resonant converter applied to photovoltaic (PV) isolated systems, comparing the effects derived by the overlapping time in the gate-signals (gate-source voltage) combining silicon (Si), silicon carbide (SiC), and gallium nitride (GaN)-based power devices. The results show that unidirectional switches (metal–oxide–semiconductor field-effect transistors (MOSFETs) plus diode) present hard switching as a result of the diode preventing the MOSFET capacitance of being discharged. The effectiveness of the converter was verified with a 200-W prototype with an input voltage range of 0–30.3 V, an output voltage of 200 V, and a switching frequency of 200 kHz. The reduction losses by applying GaN versus Si and SiC technologies are 66.49% and 53.57%, respectively. Alternatively, by applying SiC versus Si devices the reduction loss is 27.84%. Finally, according to the results, 60% of losses were caused by the diodes on both switches.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 759
Author(s):  
Bong-Yeon Choi ◽  
Soon-Ryung Lee ◽  
Jin-Wook Kang ◽  
Won-Sang Jeong ◽  
Chung-Yuen Won

This paper proposes a novel dual integrated LLC resonant converter (DI-LRC) with a wide output voltage range using various switching patterns. The primary side of the proposed DI-LLC converter consists of two resonant tanks and six switches, while the secondary side consists of a six-pulse diode rectifier. Depending on the switching pattern of the primary switch, the DI-LRC converter is performed by single full-bridge operation with a voltage gain of 1, series-connected full-bridge operation with a voltage gain of 0.5, series-connected half bridge operation with a voltage gain of 0.25, and parallel-connected full-bridge operation with a voltage gain of 2. Accordingly, the proposed DI-LRC converter has four voltage gain curves with different variations and achieves a wider output voltage range than the conventional single voltage gain curve in a given operating frequency range. In this paper, the equivalent circuits derived for each switching pattern are proposed to analyze the operating characteristics of the proposed converter according to each switching pattern, and each Q factor and voltage gain are calculated based on the analyzed equivalent circuit. The performance of the proposed converter and switching pattern is verified using the simulation and experimental results of the prototype battery charger, which is designed to be 4-kW class.


2021 ◽  
Vol 14 (1) ◽  
pp. 377
Author(s):  
Mouncif Arazi ◽  
Alireza Payman ◽  
Mamadou Baïlo Camara ◽  
Brayima Dakyo

In this paper, a bidirectional zero voltage switching (ZVS) resonant converter with narrow control frequency deviation is proposed. Wide input–output voltage range applications, such as flywheel or supercapacitors storage units are targeted. Due to symmetrical topology of resonant circuit interfaces, the proposed converter has similar behavior in bidirectional operating mode. We call it Dual Active Bridge Converter (DABC). The proposal topology of the converter is subjected to multi resonant circuits which make it necessary to study with multiscale approaches. Thus, first harmonic approximation and use of selective per unit parameters are established in (2) Methods. Then, the forward direction and backward direction of power flux exchange are detailed according to switching sequences. Switching frequency control must be completed within a narrow range. So, the frequency range deterministic parameters are emphasized in the design procedure in (3) Methods. A narrow range of switching frequency and a wide range voltage control must be ensured to suit for energy storage units, power electronic devices capabilities and electromagnetic compatibility. A 3 kW test bench is used to validate operation principles and to proof success of the developed design procedure. The interest of proposed converter is compared to other solutions from the literature in (4) Results.


2020 ◽  
Vol 13 (15) ◽  
pp. 3283-3293
Author(s):  
Yuqi Wei ◽  
Quanming Luo ◽  
Zhiqing Wang ◽  
Alan Mantooth

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4003 ◽  
Author(s):  
Cha ◽  
Kim

To achieve high efficiency and power density, silicon carbide (SiC)-based Inductor-Inductor-Capacitor (LLC) resonant converters are applied to the DC/DC converter stage of a solid-state transformer (SST). However, because the input voltage of an SST is higher than the rated voltage of a commercial SiC device, it is essential to connect SiC devices in series. This structure is advantageous in terms of voltage rating, but a parasitic capacitance tolerance between series-connected SiC devices causes voltage imbalance. Such imbalance greatly reduces system stability as it causes overvoltage breakdown of SiC device. Therefore, this paper proposes a switching scheme to solve the voltage imbalance between SiC metal-oxide-semiconductor field-effect transistors (MOSFETs). The proposed scheme sequentially turns off series-connected SiC MOSFETs to compensate for the turn-off delays caused by parasitic capacitor tolerances. In addition, dead-time selection methods to achieve voltage balance and zero voltage switching simultaneously are provided in detail. To verify the effectiveness of the proposed scheme, experiments were conducted on a 2 kW series-connected SiC MOSFET LLC resonant converter prototype.


2018 ◽  
Vol 1 (1) ◽  
pp. 544-557 ◽  
Author(s):  
Sevilay Cetin

This work presents detailed analysis of LLC resonant converter to accurately predcit the voltage gain of the converter. Nowadays, Lithium-ion battery cells are mostly preferred for on-board electrical vehicle (EV) battery chargers due to their high power density. This results in wide range output voltage regulation for battery charger. The output voltage regulation of LLC resonant converter is provided by the changing of switching frequency. However, conventional first harmonic approximation (FHA) method applying for resonant power converters produces error below resonance frequency. Therefore, the objective of this paper is accurate prediction of the voltage gain characteristic for LLC resonant converter using in EV battery charge applications. The detailed theoretical anlysis of the LLC resonant converter is presented and the presented analysis is compared with a simulation study with 2.7 kW output power and 250 V-450 V output voltage range.


Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 77 ◽  
Author(s):  
Umar Khalid ◽  
Muhammad Mansoor Khan ◽  
Muhammad Zahid Khan ◽  
Muhammad Ahmad Usman Rasool ◽  
Jianming Xu

In wide voltage range applications such as electric vehicles (EVs) onboard charging, conventional frequency modulated LLC topology has its intrinsic limitations. Its frequency span is extremely wide and the soft switching feature might get lost. To address this issue, this paper proposes a novel LLC resonant converter. The pulse width and frequency hybrid modulation are adopted to narrow down its switching frequency span. The operating principles, circuit modeling, and the design methodology are presented. A 1 kW rated prototype has been built to realize an efficient power flow between the 400 V DC bus and 200–440 V battery pack. The designed prototype validates the effectiveness of the proposed topology and modulation method. 96.8% peak efficiency is measured for the constructed experimental prototype.


Sign in / Sign up

Export Citation Format

Share Document