Alpha Lactose Monohydrate

Keyword(s):  
Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


2019 ◽  
Vol 16 (10) ◽  
pp. 931-939
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Yannis Dotsikas

Background: The loop diuretic drug furosemide is widely used for the treatment of edema in various conditions, such as pulmonary, cardiac and hepatic edema, as well as cardiac infarction. Furosemide, due to its poor water solubility and low bioavailability after oral administration of conventional dosage form, is categorized as class IV in the biopharmaceutical classification system. Objective: In the case of furosemide, this release profile is responsible for various physiological problems, acute diuresis being the most serious. This adverse effect can be circumvented by the modified release of furosemide from tablet formulations compared to those forms designed for immediate release. Method: In this report, a D-optimal combined experimental design was applied for the development of furosemide containing bilayer and compression coated tablets, aiming at lowering the drug’s burst release in the acidic environment of the stomach. A D-optimal combined design was selected in order to include all requirements in one design with many levels for the factors examined. The following responses were selected as the ones reflecting better criteria for the desired drug release: dissolution at 120 min (30-40%), 300 min (60-70%) and 480 min >95%. The new formulations, suggested by the Doptimal combined design, incorporated different grades of Eudragit ® polymers (Eudragit® E100 and Eudragit® L100-55), lactose monohydrate and HPMC K15M. The dissolution profile of furosemide from these systems was probed via in vitro dissolution experiments in buffer solutions simulating the pH of the gastrointestinal tract. Results: The results indicate that the use of Eudragit® E100 in conjunction with lactose monohydrate led to 21.32-40.85 % drug release, in the gastric medium, in both compression-coated and bilayer tablets. This is lower than the release of the mainstream drug Lasix® (t=120 min, 44.5% drug release), implying longer gastric retention and drug waste minimization. Conclusion: Furosemide’s release in the intestinal environment, from compression coated tablets incorporating Eudragit® L100-55 and HPMC K15M in the inner core or one of the two layers of the bilayer tablets, was delayed, compared to Lasix®


2015 ◽  
Vol 30 (S1) ◽  
pp. S127-S130
Author(s):  
Simone T. B. de Salvi ◽  
Diego Luiz Tita ◽  
Carlos de O. Paiva-Santos ◽  
Selma G. Antonio

Hydrochlorothiazide (HCTZ) is a diuretic used for the treatment of blood pressure (hypertension). HCTZ has two anhydrous polymorphs denoted as Forms I and II. Aiming at solid-state characterization, X-ray powder diffraction (XRPD) is known to be a powerful technique which has been successfully applied in investigating polymorphism in medicines. In this work, three tablets of HCTZ (a reference and two generic) were analyzed. The data were collected using Rigaku RINT2000 diffractometer copper rotate anode. The Rietveld method (RM) was applied for the characterization of HCTZ polymorphic form. For the crystalline excipients where the crystal structure is known, their phases were identified by the RM either. The results showed that all the tablets exhibit Form I of HCTZ, while the excipient lactose monohydrate is found to exhibit the crystalline form. One of the generics is also found to exhibit the excipient sodium lauryl sulfate (SLS) in the crystalline form. Therefore, the RM and XRPD are an efficient methodology for characterization of the crystalline Form I of the active principle of HCTZ and crystalline excipients lactose monohydrate and SLS in solid formulations. It is also interesting to observe excipients not described in the package insert of the medicament.


2008 ◽  
Vol 89 (1) ◽  
pp. 43-67 ◽  
Author(s):  
Yuan Listiohadi ◽  
James Arthur Hourigan ◽  
Robert Walter Sleigh ◽  
Robert John Steele

2019 ◽  
Vol 70 (7) ◽  
pp. 2590-2600
Author(s):  
Ioana Cristina Tita ◽  
Lavinia Lupa ◽  
Bogdan Tita ◽  
Roxana Liana Stan ◽  
Laura Vicas

Compatibility studies between active drugs and excipients are substantial in the pharmaceutical technology. Thermal analysis has been extensively used to obtain information about drug-excipient interactions and to perform pre-formulation studies of pharmaceutical dosage forms. The objective of the present study was to evaluate the compatibility of the valsartan (VALS) with pharmaceutical excipients of common use including diluents, binders, disintegrants, lubricants and solubilising agents. Thermogravimetry (TG), derivative thermogravimetry (DTG), but especially differential scanning calorimetry (DSC) were used for a first screening to find small variations in peak temperature and/or their associated enthalpy for six drug/excipient mixtures (starch, cross caramelose sodique, microcrystalline cellulose 102, povidone K30, lactose monohydrate and magnesium stearate), which indicate some degree of interaction. Additional methods using Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) confirmed the incompatibility of VALS with starch, povidone K30, lactose monohydrate and magnesium stearate. Those excipients should be avoided in the development of solid dosage forms.


Sign in / Sign up

Export Citation Format

Share Document