scholarly journals Flood Management of Diyala River

2021 ◽  
Vol 27 (8) ◽  
pp. 32-42
Author(s):  
Hajir Majid Ghali ◽  
Riyadh Z. Azzubaidi

Diyala Governorate was recently exposed to high flood waves discharged from Hemrin Dam. Since the dam was at its full capacity during the flood period, these waves were discharged to the Diyala River. Because of the reduction in Diyala River capacity to 750m3/s, the cities and villages on both sides of the river banks were inundated. Thus, the study's objective is to design a flood escape out of the Diyala River, to discharge the flood wave through it. The flood escape simulation was done by using HEC- RAS software. Two hundred twenty-three cross sections for the escape and 30 cross-sections of the Diyala River were used as geometric data. Depending on the geological formation that the escape passed through, two roughness coefficients of 0.035 and 0.028 were applied. An outflow downstream Hemrin Dam varies from 1100m3/s to 1800m3/s was applied as boundary condition upstream Diyala River. One dimensional hydraulic model was developed for the escape and the river, the results showed that aside weir could be constructed at the escape entrance with crest level 67m.a.m.s.l. and 800m width, followed by drop structure of four rectangular steps, this case provides safe discharge to Diyala River if flood wave of 1500m3/s released from Hemrin Dam.

2021 ◽  
Vol 27 (7) ◽  
pp. 42-52
Author(s):  
Hajir Majid Ghali ◽  
Riyadh Z. Azzubaidi

Diyala Governorate was exposed recently to high flood waves discharged from Hemrin Dam to Diyala River when the dam reached its full capacity. The recently recorded discharge capacity of Diyala River was reduced to just 750m3/s. This exposes cities and villages along the Diyala River to flood risk when discharging the flood waves, which may reach 3000 m3/s. It is important to manage, suggest, and design flood escapes to discharge the flood waves from Hemrin Dam away from Diyala River. This escape branches from Hemrin Lake towards Ashweicha Marsh. One dimensional hydraulic model was developed to simulate the flow within the escape by using HEC-RAS software. Eighty-two cross-sections were extracted from the digital elevation model for the escape and used as geometric data. Moreover, thirty cross-sections for the Diyala River were utilized from the Strategic Study for Water and Land Resources in Iraq. Since the escape passes through two regions of different geological formations, two roughness coefficients of 0.035and0.028were used. Two discharge cases were applied3000m3/s, which is the 500 years return period extreme hydrograph of Hemrin Dam, and 4000 m3/s, which is the design discharge of Hemrin Dam spillway. A spillway was proposed at the escape entrance with crest level 105m.a.m.s.l., followed by a drop structure with eighteen rectangular steps


2021 ◽  
Author(s):  
Mohamedmaroof Shaikh ◽  
Sanjaykumar Yadav ◽  
Vivek Manekar

<p>Floods are among the severe weather disasters that cause catastrophic damage to surroundings and adversely impact populations. This study aims to create a one-dimensional (1D) hydraulic model using HEC-RAS for the Rel River in Banaskantha, Gujarat, India. The model has been developed for the extreme flood event of July 2017. A total of hundred cross-sections have been used as geometric data. The peak discharge of 3355 m<sup>3</sup>/s and the river slope has been applied as upstream and downstream boundary conditions. The model has been calibrated and validated using observed water depth at Railway bridge and Highway bridge. Critical cross-sections have been identified using the 1D hydraulic model. Eight out of the hundred cross-sections were safe for a flood discharge of 3355 m<sup>3</sup>/s. The villages at high flood risk are identified for this discharge. To mitigating floods, the construction of a retaining wall or levees is recommended to protect these villages. This study can help a disaster management strategy for the cities and town in the River’s vicinity.</p>


2012 ◽  
Vol 9 (5) ◽  
pp. 5671-5695
Author(s):  
A. A. Ali ◽  
N. A. Al-Ansari ◽  
S. Knutsson

Abstract. Changes in the morphology of the River Tigris within Baghdad City are very noticeable in recent years. The number of islands is increasing with time despite the fact that huge amount of sediments are trapped in reservoirs upstream Baghdad City. The debris of destroyed bridges in the wars of 1991 and 2003 had enhanced the development of these islands. As a consequence the ability of the river had been reduced to pass flood waves. This fact caused partial flooding of parts of Baghdad City. Cross sections of the River Tigris were surveyed in three occasions (1976, 1991 and 2008). The last survey conducted in 2008 by Ministry of Water Resources covered 49 km of the river from Al-Muthana Bridge to its confluence with Diyala River at 250 m intervals. The data was used to predict the maximum flood capacity for the river using one-dimensional hydraulic model for steady flow "HEC-RAS". Calibration was carried out for the model using field measurements for water levels along the last 15 km from its reach and the last 10 yr observations at Sarai Baghdad station. The average discharge of the river in Baghdad had been calculated for the past ten years. This value was introduced in the model. Then different scenarios were applied by increasing the discharge in order to find out the critical discharge that can cause inundation. The procedure continued to detect the areas that had been inundated and the water level was recorded. The model showed a significant reduction in the current river capacity in comparison with what the river had used to hold during floods of 1971 and 1988. The three surveys conducted on the same reach of the River Tigris indicated that the capacity of the river to pass water had been decreased. In addition the changes in the morphology of the river cross sections were very clear.


1994 ◽  
Vol 107 (2) ◽  
pp. 125-137 ◽  
Author(s):  
José Luis Muñoz-Cobo ◽  
Gumersindo Verdú ◽  
Claubia Pereira ◽  
Alberto Escrivá ◽  
José Ródenas ◽  
...  

2021 ◽  
Vol 26 (2) ◽  
pp. 183-193
Author(s):  
Desyta Ulfiana ◽  
Yudi Eko Windarto ◽  
Nurhadi Bashit ◽  
Novia Sari Ristianti

Klaten Regency is one of the regions that has a high level of flood vulnerability. The area of Klaten Regency which is huge and has diverse characteristics makes it difficult to determine an appropriate flood management model. Water Sensitive Urban Design (WSUD) is a model that focuses on handling water management problems with environmentally friendly infrastructure. Therefore, an analysis is carried out to determine the level of flood vulnerability and factors causing flooding to plan a WSUD design that is suitable for each sub-districts of Klaten Regency. The Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods are used to help the analysis. Aspects used as criteria are rainfall, slope, soil type, geological conditions, and land use. Based on the analysis, it could be concluded that Klaten Regency has two sub-districts with high flood hazard category, 21 sub-districts with medium category, and three sub-districts with low category. Bayat and Cawas are sub-districts that have a high level of flood vulnerability category. Meanwhile, Kemalang, Karangnongko and Polanharjo are districts with a low level of flood vulnerability category. The main factors causing flooding in Klaten Regency are slope and land use.


Author(s):  
G. A. Vorobieva ◽  
◽  
A. M. Kuznetsov ◽  
E. O. Rogovskoi ◽  
◽  
...  

This paper examines characteristic features of floodplain accumulation at geoarchaeological site Ostrov Listvenichnyi, located on the Angara River at the same-name island (Northeast Angara region, Baikal Siberia). The problems of interpretation of topographic and lithological data, island architecture, glacial and postglacial natural climatic insights (MIS 2–MIS 1) are also touched upon. The accumulation of sediments at a series of 16 archaeological test pits recorded along the northwestern side of the island was analyzed by using pedolithological method. Island formation history included the upbuilding of the origin island based on river point bar, further transformation into “east” pre-island and final articulation of ancient “east” pre-island and younger “west” pre-island. The primary differences in alluvium composition of ancient pre-island (red beds, clay loam) and Holocene sedimentations (grey beds, sandy loam), both situated at the same level, were identified and explained. Detailed analysis of floodplain accumulation revealed eight distinct lithological layers varying by the structure and the composition. The following conclusions were reached based on the data available: lithological strata 1–5 have formed in Sartan, lithological strata 6–8 have formed in Holocene. Every layer contains the information on the changing climate and environment: signals of floods (high flood stages in 7 layer, “dry” stages in 3 layer), different phases of humification (humusless strata 1–4, first fragile humus horizons in layer 5, more pronounced humus horizons a, b, c, d in layer 4, and humus background in strata 7–8), epigenetic markers of сryogenic processes in strata 3–5. Analysis suggest also three chronologically differentiated floodplain benches: lower 1,5–2 meter bench (top of layer 3) associated with Middle Sartan; middle 2,5–3 meter bench (top of layer 5) associated with Final Sartan; top 4,5–5 meter bench (top of layer 8) associated with modern time.


2019 ◽  
Vol 30 (14) ◽  
pp. 2147-2165 ◽  
Author(s):  
Alireza Ostadrahimi ◽  
Fathollah Taheri-Behrooz

In this article, an analytical solution is presented for twinning deformation effect of a prismatic shape memory alloy beam-column. To this end, a reduced one-dimensional Souza model is employed to study the bending stress of a pre-strained shape memory alloy beam-column at low temperatures. Analytical expressions for bending stress as well as polynomial approximations for deflection are obtained. Derived equations for bending problem are employed to analyze twinning deformation effect of shape memory alloy beam-columns with rectangular and circular cross sections. Furthermore, the distance of zero-stress fiber from the center line during loading is studied. The results of this work show good agreement when compared with experimental data and finite element results.


2015 ◽  
Vol 62 (3-4) ◽  
pp. 101-119 ◽  
Author(s):  
Wojciech Artichowicz ◽  
Dzmitry Prybytak

AbstractIn this paper, energy slope averaging in the one-dimensional steady gradually varied flow model is considered. For this purpose, different methods of averaging the energy slope between cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic means. However, from the formal viewpoint, the application of different averaging formulas results in different numerical integration formulas. This study examines the basic properties of numerical methods resulting from different types of averaging.


Sign in / Sign up

Export Citation Format

Share Document