Fractional Operator Viscoelastic Models in Dynamic Problems of Mechanics of Solids: A Review

Author(s):  
M. V. Shitikova
1997 ◽  
Vol 50 (1) ◽  
pp. 15-67 ◽  
Author(s):  
Yuriy A. Rossikhin ◽  
Marina V. Shitikova

The aim of this review article is to collect together separated results of research in the application of fractional derivatives and other fractional operators to problems connected with vibrations and waves in solids having hereditarily elastic properties, to make critical evaluations, and thereby to help mechanical engineers who use fractional derivative models of solids in their work. Since the fractional derivatives used in the simplest viscoelastic models (Kelvin-Voigt, Maxwell, and standard linear solid) are equivalent to the weakly singular kernels of the hereditary theory of elasticity, then the papers wherein the hereditary operators with weakly singular kernels are harnessed in dynamic problems are also included in the review. Merits and demerits of the simplest fractional calculus viscoelastic models, which manifest themselves during application of such models in the problems of forced and damped vibrations of linear and nonlinear hereditarily elastic bodies, propagation of stationary and transient waves in such bodies, as well as in other dynamic problems, are demonstrated with numerous examples. As this takes place, a comparison between the results obtained and the results found for the similar problems using viscoelastic models with integer derivatives is carried out. The methods of Laplace, Fourier and other integral transforms, the approximate methods based on the perturbation technique, as well as numerical methods are used as the methods of solution of the enumerated problems. This review article includes 174 references.


Author(s):  
Yury Rossikhin ◽  
Marina Shitikova

AbstractThis note is dedicated to the centennial jubilee of the Russian Academician Yury Rabotnov, who was a pioneer in the application of fractional operators in Mechanics of Solids. In the present Note, the authors wish to present a contemporary handling of Rabotnov operators introduced in 1948 and to show their connectedness with fractional derivatives, what provides the ageless interest to his ideas and results.


2021 ◽  
Vol 11 (15) ◽  
pp. 6931
Author(s):  
Jie Liu ◽  
Martin Oberlack ◽  
Yongqi Wang

Singularities in the stress field of the stagnation-point flow of a viscoelastic fluid have been studied for various viscoelastic constitutive models. Analyzing the analytical solutions of these models is the most effective way to study this problem. In this paper, exact analytical solutions of two-dimensional steady wall-free stagnation-point flows for the generic Oldroyd 8-constant model are obtained for the stress field using different material parameter relations. For all solutions, compatibility with the conservation of momentum is considered in our analysis. The resulting solutions usually contain arbitrary functions, whose choice has a crucial effect on the stress distribution. The corresponding singularities are discussed in detail according to the choices of the arbitrary functions. The results can be used to analyze the stress distribution and singularity behavior of a wide spectrum of viscoelastic models derived from the Oldroyd 8-constant model. Many previous results obtained for simple viscoelastic models are reproduced as special cases. Some previous conclusions are amended and new conclusions are drawn. In particular, we find that all models have singularities near the stagnation point and most of them can be avoided by appropriately choosing the model parameters and free functions. In addition, the analytical solution for the stress tensor of a near-wall stagnation-point flow for the Oldroyd-B model is also obtained. Its compatibility with the momentum conservation is discussed and the parameters are identified, which allow for a non-singular solution.


2020 ◽  
Vol 23 (3) ◽  
pp. 723-752 ◽  
Author(s):  
Alessio Fiscella ◽  
Patrizia Pucci

AbstractThis paper deals with the existence of nontrivial solutions for critical possibly degenerate Kirchhoff fractional (p, q) systems. For clarity, the results are first presented in the scalar case, and then extended into the vectorial framework. The main features and novelty of the paper are the (p, q) growth of the fractional operator, the double lack of compactness as well as the fact that the systems can be degenerate. As far as we know the results are new even in the scalar case and when the Kirchhoff model considered is non–degenerate.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

AbstractThis study is aimed to investigate the sufficient conditions of the existence of unique solutions and the Ulam–Hyers–Mittag-Leffler (UHML) stability for a tripled system of weighted generalized Caputo fractional derivatives investigated by Jarad et al. (Fractals 28:2040011 2020) in the frame of Chebyshev and Bielecki norms with time delay. The acquired results are obtained by using Banach fixed point theorems and the Picard operator (PO) method. Finally, a pertinent example of the results obtained is demonstrated.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


1953 ◽  
Author(s):  
B. Hall ◽  
R. Ruthrauff ◽  
D. Dill
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document