Prediction and Control of Coke Plant Wastewater Quality using Machine Learning Techniques

2020 ◽  
Vol 63 (1) ◽  
pp. 47-56
Author(s):  
Himanshu Khandelwal ◽  
Shweta Shrivastava ◽  
Adity Ganguly ◽  
Abhijit Roy
2022 ◽  
pp. 1-24
Author(s):  
Amithkumar Gajakosh ◽  
R. Suresh Kumar ◽  
V. Mohanavel ◽  
Ragavanantham Shanmugam ◽  
Monsuru Ramoni

This chapter provides an analysis of the state-of-the-art in ML applications for optimizing the additive manufacturing process. This chapter primarily presents a review of the literature on the use of machine learning (ML) in optimizing the additive manufacturing process at various stages. The chapter identifies ML-researched areas in which ML can be used to optimize processes such as process design, process plan and control, process monitoring, quality enhancement of additively manufactured products, and so on. In addition, general literature on the intersection of additive manufacturing and machine learning will be presented. The benefits and drawbacks of ML for additive manufacturing will be discussed, as well as existing obstacles that are currently limiting applications.


2020 ◽  
Author(s):  
Riya Tapwal ◽  
Nitin Gupta ◽  
Qin Xin

<div>IoT devices (wireless sensors, actuators, computer devices) produce large volume and variety of data and the data</div><div>produced by the IoT devices are transient. In order to overcome the problem of traditional IoT architecture where</div><div>data is sent to the cloud for processing, an emerging technology known as fog computing is proposed recently.</div><div>Fog computing brings storage, computing and control near to the end devices. Fog computing complements the</div><div>cloud and provide services to the IoT devices. Hence, data used by the IoT devices must be cached at the fog nodes</div><div>in order to reduce the bandwidth utilization and latency. This chapter discusses the utility of data caching at the</div><div>fog nodes. Further, various machine learning techniques can be used to reduce the latency by caching the data</div><div>near to the IoT devices by predicting their future demands. Therefore, this chapter also discusses various machine</div><div>learning techniques that can be used to extract the accurate data and predict future requests of IoT devices.</div>


2020 ◽  
Author(s):  
Riya Tapwal ◽  
Nitin Gupta ◽  
Qin Xin

<div>IoT devices (wireless sensors, actuators, computer devices) produce large volume and variety of data and the data</div><div>produced by the IoT devices are transient. In order to overcome the problem of traditional IoT architecture where</div><div>data is sent to the cloud for processing, an emerging technology known as fog computing is proposed recently.</div><div>Fog computing brings storage, computing and control near to the end devices. Fog computing complements the</div><div>cloud and provide services to the IoT devices. Hence, data used by the IoT devices must be cached at the fog nodes</div><div>in order to reduce the bandwidth utilization and latency. This chapter discusses the utility of data caching at the</div><div>fog nodes. Further, various machine learning techniques can be used to reduce the latency by caching the data</div><div>near to the IoT devices by predicting their future demands. Therefore, this chapter also discusses various machine</div><div>learning techniques that can be used to extract the accurate data and predict future requests of IoT devices.</div>


2011 ◽  
Vol 500 ◽  
pp. e31-e32
Author(s):  
Aleksandar Tenev ◽  
Silvana Markovska-Simoska ◽  
Ljupco Kocarev ◽  
Jordan Pop-Jordanov

Author(s):  
Attia Qamar ◽  
Ahmad Karim ◽  
Shahab Shamshirband

Smartphone devices, particularly android devices used by billions of people everywhere in the world. Similarly, this increasing rate attracts mobile botnet attackers that is a network of interconnected nodes operated by command and control (C&amp;C) method to expand malicious activities. At present, mobile botnet attacks carried Distributed denial of services (DDoS) that causes to steal sensitive data, remote access, spam generation, etc. Consequently, various approaches are defined in the literature to detect mobile botnet using static or dynamic analysis. In this paper, we have proposed a novel hybrid model, which is a combination of static and dynamic method that relies on machine learning to identify android botnet applications having C&amp;C capability. The results evaluated through machine learning classifiers in which Random forest classifier outperform other ML techniques, i.e. Naïve Bayes, Support Vector Machine, and Simple logistics. Our proposed framework can achieve 97.48% accuracy in detecting such harmful applications. Furthermore, we highlight some research directions and possible solutions regarding botnet attacks for the entire community.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Sign in / Sign up

Export Citation Format

Share Document