Effectiveness of Growing Wheat-Variety Blends in Reducing Damage Caused by Stem-Rust (Puccinia graminis pers.f.sp. tritici Erikss. et Henn., the Causal Agent)

2021 ◽  
Vol 47 (5) ◽  
pp. 490-494
Author(s):  
G. V. Volkova ◽  
E. V. Gladkova ◽  
O. O. Miroshnichenko
2006 ◽  
Vol 96 (1) ◽  
pp. 96-104 ◽  
Author(s):  
F. J. Keiper ◽  
M. S. Haque ◽  
M. J. Hayden ◽  
R. F. Park

Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.


1958 ◽  
Vol 36 (3) ◽  
pp. 351-355 ◽  
Author(s):  
G. J. Green ◽  
T. Johnson

Plants of common barberry (Berberis vulgaris L.) were inoculated to determine their reaction to race 15B of wheat stem rust (Puccinia graminis Pers. f. sp. tritici Erikss. & Henn.). Only resistant-type infections occurred on plants inoculated with two pure cultures of race 15B-4 (Can.). Strong circumstantial evidence for the resistance of common barberry to race 15B was obtained from inoculations with sporidia from teliospores produced in the field. Sporidia from teliospores collected from the emmer wheat variety Vernal, which is selective for race 15B, produced only infections of a resistant type, and those from the common wheat variety Lee, also selective for 15B, caused both resistant and susceptible types of infections. Transfer of aeciospores to wheat from the susceptible type demonstrated that 15B was not present. Sporidia from teliospores on the varieties Reliance and Mentana, which are not selective for this race, caused infections of a susceptible type. Resistant-type and susceptible-type infections appeared when barberry leaves were infected with races 29 and 48A.


1977 ◽  
Vol 55 (11) ◽  
pp. 1445-1452 ◽  
Author(s):  
D. J. Samborski ◽  
W. K. Kim ◽  
R. Rohringer ◽  
N. K. Howes ◽  
R. J. Baker

Seedlings of resistant (Sr6) and susceptible (sr6) near-isogenic lines of wheat (Triticum aestivum L.) were inoculated with a race of stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn.) that was avirulent on the line with Sr6 and they were kept at 19, 25, 26, and 27 °C. Fluorescence microscopy was used to detect autofluorescing necrotic host cells and rust colonies after these were stained with a fiuorochrome (Calcofluor White M2R New).In leaves containing the Sr6 gene, a smaller percentage of colonies grown at 25 °C had necrotic cells associated with them than those that were grown at 19 °C. The incidence of colony-associated necrosis in these leaves could be further reduced by increasing the temperature to 26 °C and 27 °C. Similarly, the number of necrotic host cells per colony decreased with an increase in temperature. Colonies in genotypically resistant leaves were usually smaller than those in genotypically susceptible leaves, but the differences in colony sizes between these two lines decreased at the higher temperatures.When infected plants containing the Sr6 gene were kept for varying times at 25 °C and then were transferred to 19 °C, there was significantly less fungal growth and more necrosis than in plants kept continuously at 25 °C. This necrosis occurred largely in those cells that were invaded after the transfer to 19 °C, when the Sr6 gene was activated.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


1993 ◽  
Vol 73 (3) ◽  
pp. 845-846 ◽  
Author(s):  
A. R. McElroy

AC Nordic is a late-maturing orchardgrass (Dactylis glomerata L.) cultivar. It was developed by mass selection for yield, persistence and resistance to stem rust (Puccinia graminis) at the Plant Research Centre, Agriculture Canada, Ottawa. Its yield was similar to that of cv. Sumas in a total of 33 station years in Quebec. Yield in second and subsequent production years was 101.6% of cv. Sumas over 19 station years. Key words: Dactylis glomerata L., orchardgrass


2013 ◽  
Vol 41 (1) ◽  
pp. 219-220
Author(s):  
Badawy Mohdly ◽  
Minaas Sallam ◽  
Farouk El-Banoby ◽  
Osama Boulot

2014 ◽  
Vol 163 (5) ◽  
pp. 353-363 ◽  
Author(s):  
Netsanet Hei ◽  
Hussein Ali Shimelis ◽  
Mark Laing ◽  
Belayneh Admassu

Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. D. Peterson ◽  
K. J. Leonard ◽  
J. D. Miller ◽  
R. J. Laudon ◽  
T. B. Sutton

A federal and state program operated from 1918 until the 1980s to eradicate common barberry (Berberis vulgaris), the alternate host of Puccinia graminis, from the major areas of cereal production in the United States. Over 500 million bushes were destroyed nationally during the program, approximately 1 million in Minnesota. Some sites in Minnesota where barberry bushes were destroyed remained in the “active” class when eradication was phased out in the 1980s. Active sites were defined as those on which there was still a possibility of emergence of barberry seedlings or sprouts arising from the parent bush. In the present study, from 1998 to 2002, 72 of the approximately 1,200 active sites in Minnesota were surveyed. Areas within 90 m of mapped locations of previously destroyed bushes were searched carefully at each site. Reemerged barberry plants were found on 32 sites. The reproductive status and GPS coordinates were recorded for each reemerged bush. More than 90% of the barberry bushes were found in counties with less than 400 ha of wheat per county, mostly in southeastern Minnesota, but one bush was found in a major wheat-producing county in northwestern Minnesota. Reemergence of barberry may serve as a source of new wheat stem rust races in future epidemics.


Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


Sign in / Sign up

Export Citation Format

Share Document