Regulation of the crankshaft speed of a diesel engine with a common rail fuel system

2012 ◽  
Vol 32 (7-8) ◽  
pp. 523-525 ◽  
Author(s):  
E. V. Zubkov ◽  
A. A. Novikov
2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Mikhail Shatrov ◽  
Valery Malchuk ◽  
Andrey Dunin ◽  
Ivan Shishlov ◽  
Vladimir Sinyavski

A method of fuel injection rate shaping of the Diesel engine common rail fuel system with common rail injectors and solenoid control is proposed. The method envisages the impact on control current of impulses applied to the control solenoid valve of the common rail injectors for variation of the injection rate shape. At that, the fuel is supplied via two groups of injection holes. The entering edges of the first group with the coefficient of flow, ??B, were located in the sack volume and the entering edges of the second group (coefficient of flow, ??H) - on the locking taper surface of the nozzle body. The coefficients of flow, ??B, and ??H differ considerably and depend on the valve needle position. This enables to adjust the injection quantity by injection holes taking into account operating conditions of the Diesel engine and hence - by the combustion chamber zones. Using the constant fuel flow set-up, characteristic of the effective cross-section of the common rail fuel system injector holes was investigated. The diameter of injector holes was 0.12 ? 0.135 mm. The excessive pressure at the entering edges varied from 30 to 150 MPa and more and the excessive pressure in the volume behind the output edge - from 0 to 16 MPa.


2001 ◽  
Author(s):  
Kazutaka Ohishi ◽  
Tamitoshi Maeda ◽  
Karsten Hummel

2014 ◽  
Vol 2014 (4) ◽  
pp. 80-85
Author(s):  
Александр Обозов ◽  
Aleksandr Obozov ◽  
Дмитрий Субботенко ◽  
Dmitriy Subbotenko

Analyzed by means of the electronic control diesel engine. The algorithms work with Common Rail fuel system with electronic control for various operating conditions.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


Sign in / Sign up

Export Citation Format

Share Document