scholarly journals A control method of fuel distribution by combustion chamber zones and its dependence on injection conditions

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Mikhail Shatrov ◽  
Valery Malchuk ◽  
Andrey Dunin ◽  
Ivan Shishlov ◽  
Vladimir Sinyavski

A method of fuel injection rate shaping of the Diesel engine common rail fuel system with common rail injectors and solenoid control is proposed. The method envisages the impact on control current of impulses applied to the control solenoid valve of the common rail injectors for variation of the injection rate shape. At that, the fuel is supplied via two groups of injection holes. The entering edges of the first group with the coefficient of flow, ??B, were located in the sack volume and the entering edges of the second group (coefficient of flow, ??H) - on the locking taper surface of the nozzle body. The coefficients of flow, ??B, and ??H differ considerably and depend on the valve needle position. This enables to adjust the injection quantity by injection holes taking into account operating conditions of the Diesel engine and hence - by the combustion chamber zones. Using the constant fuel flow set-up, characteristic of the effective cross-section of the common rail fuel system injector holes was investigated. The diameter of injector holes was 0.12 ? 0.135 mm. The excessive pressure at the entering edges varied from 30 to 150 MPa and more and the excessive pressure in the volume behind the output edge - from 0 to 16 MPa.

2014 ◽  
Vol 2014 (4) ◽  
pp. 80-85
Author(s):  
Александр Обозов ◽  
Aleksandr Obozov ◽  
Дмитрий Субботенко ◽  
Dmitriy Subbotenko

Analyzed by means of the electronic control diesel engine. The algorithms work with Common Rail fuel system with electronic control for various operating conditions.


2021 ◽  
Author(s):  
Mojtaba Moradi ◽  
Michael R Konopczynski

Abstract Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.


2019 ◽  
Vol 178 (3) ◽  
pp. 240-246
Author(s):  
Mirosław KARCZEWSKI

The problem of the military vehicles engines fuelling increases with the growth of the amount of vehicles in the armies. At the same time, another problem with fuel supply in modern engines is the use of bio component additives, which changes characteristics (quality) of the used fuels. Therefore, it is important to take actions to adapt engines to powering with fuels coming from renewable sources.The aim of the research was to evaluate the possibility of feeding the diesel engine (influence on the useful parameters and composi-tion) with mixtures of the unified battlefield fuel F-34/F-35 with biocomponents in the form of anhydrous ethyl alcohol and RME. The tests were conducted during fuelling of the engine with six kinds of fuels: basic fuel (diesel oil), NATO code F-34/F-35 fuel, as well as fuel mixtures: F-34 and RME with different ratio and F-34/F-35 with bioethanol. In the result of the research it was concluded that the parameters of the G9T Renault engine with the common rail fuel system in terms of F-34 and RME consumption (using) decreased in comparison to diesel oil basic fuel. It is not possible to supply the engine with the mixture of ethyl alcohol and F-34 fuel – alcohol pre-cipitation and obliteration of fuel system components


2018 ◽  
Vol 234 ◽  
pp. 03004 ◽  
Author(s):  
Paweł Krzaczek ◽  
Arkadiusz Rybak ◽  
Andrzej Bochniak

The aim of the research was to determine the impact of biofuels from waste materials of plant and animal origin on the parameters of the common rail power supply system in the utility engine. The tests included identification of power system operation parameters in the whole load range of the tested engine, taking into account the limit and diagnostic parameters of the injectors operation. Then, for certain parameters, the engine injectors were tested on the test bench: injection pressure in the range of 25-135 MPa, injection time in the range of 200-1600 μs. In the tests, as reference fuel for testing injectors were used diesel fuel and three types of methyl esters of higher fatty acids: vegetable, animal and WCO origin. The measurements for individual fuels were made in the operating temperature range 30-60°C. The tests have shown significant changes in the volume of the fuel injection rates depending on the fuel used. Particularly, visible changes concerned the power system operation parameters for high engine speeds and the maximum working pressure of the common rail system in the engine.


Sign in / Sign up

Export Citation Format

Share Document