In Silico Identification of Active Phytochemicals against COVID-19 by Targeting the SARS-CoV-2 Spike Glycoprotein Through Molecular Docking: A Drug Repurposing Approach

Author(s):  
Rathan Kumar

The spread of coronavirus disease (COVID-19) has become one of the most significant pandemics in modern human history, affecting more than 70 million people worldwide. Currently, only a few fda-approved drugs have suggested fighting the infection, in the absence of a specific antiviral treatment. Thus, repurposing the presently available drugs or using plant-based bioactive compounds can be the fastest possible solution. In this study, the computational methodology of molecular docking techniques was performed to screen and identify the viable potent inhibitors against the SARS-CoV-2 spike protein from a library of 200 active phytochemicals, based on their highest binding affinity towards the target protein. Later, the binding affinities of these phytochemicals were compared with that of the fda-approved drug fluvoxamine, which is currently in use against the mild COVID-19 patients. Out of these, 86 phytochemicals that exhibited better binding energy of value ≤-7.00kcal/mol, is selected for adme (absorption, distribution, metabolism, and excretion) analysis and drug likeliness studies to check the feasibility of these compounds. Wherein, 79 out of 86 phytochemicals showed a better theoretical affinity with sufficiently bearable adme properties. Thus, they can be the lead molecule for further investigation and validation processes towards developing natural inhibitors against the SARS-CoV-2 virus.

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Khalid Mashay Alanazi ◽  
Mohammad Abul Farah ◽  
Yan-Yan Hor

The COVID-19 pandemic caused by SARS-CoV-2 is unprecedented in recent memory owing to the non-stop escalation in number of infections and deaths in almost every country of the world. The lack of treatment options further worsens the scenario, thereby necessitating the exploration of already existing US FDA-approved drugs for their effectiveness against COVID-19. In the present study, we have performed virtual screening of nutraceuticals available from DrugBank against 14 SARS-CoV-2 proteins. Molecular docking identified several inhibitors, two of which, rutin and NADH, displayed strong binding affinities and inhibitory potential against SARS-CoV-2 proteins. Further normal model-based simulations were performed to gain insights into the conformational transitions in proteins induced by the drugs. The computational analysis in the present study paves the way for experimental validation and development of multi-target guided inhibitors to fight COVID-19.


Author(s):  
Muhammad Umer Anwar ◽  
Farjad Adnan ◽  
Asma Abro ◽  
Muhammad Rayyan Khan ◽  
Asad Ur Rehman ◽  
...  

<p></p><p>The ongoing pandemic of Coronavirus Disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. Currently no approved drug or vaccine exists against SARS-CoV-2. Drug repurposing, represented as an effective drug discovery strategy from existing drugs, is a time efficient approach to find effective drugs against SARS-CoV-2 in this emergency situation. Both experimental and computational approaches are being employed in drug repurposing with computational approaches becoming increasingly popular and efficient. In this study, we present a robust experimental design combining deep learning with molecular docking experiments to identify most promising candidates from the list of FDA approved drugs that can be repurposed to treat COVID-19. We have employed a deep learning based Drug Target Interaction (DTI) model, called DeepDTA, with few improvements to predict drug-protein binding affinities, represented as KIBA scores, for 2,440 FDA approved and 8,168 investigational drugs against 24 SARS-CoV-2 viral proteins. FDA approved drugs with the highest KIBA scores were selected for molecular docking simulations. We ran docking simulations for 168 selected drugs against 285 total predicted and/or experimentally proven active sites of all 24 SARS-CoV-2 viral proteins. We used a recently published open source AutoDock based high throughput screening platform virtualflow to reduce the time required to run around 50,000 docking simulations. A list of 49 most promising FDA approved drugs with best consensus KIBA scores and AutoDock vina binding affinity values against selected SARS-CoV-2 viral proteins is generated. Most importantly, anidulafungin, velpatasvir, glecaprevir, rifabutin, procaine penicillin G, tadalafil, riboflavin 5’-monophosphate, flavin adenine dinucleotide, terlipressin, desmopressin, elbasvir, oxatomide, enasidenib, edoxaban and selinexor demonstrate highest predicted inhibitory potential against key SARS-CoV-2 viral proteins.</p><p></p>


2020 ◽  
Author(s):  
Ananta Swargiary ◽  
AKALESH Verma ◽  
Manita Daimari ◽  
Mritunjoy Kumar Roy

The present study investigates the binding affinities of 61 FDA approved drugs against two key proteases of SARS-COV2, 3-chymotrypsin-like protease and papain-like protease. We also investigates the ADMET properties of the top 10 besting binding drugs to understand the drug likeness property.


2020 ◽  
Author(s):  
Muhammad Umer Anwar ◽  
Farjad Adnan ◽  
Asma Abro ◽  
Muhammad Rayyan Khan ◽  
Asad Ur Rehman ◽  
...  

<p></p><p>The ongoing pandemic of Coronavirus Disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to global public health. Currently no approved drug or vaccine exists against SARS-CoV-2. Drug repurposing, represented as an effective drug discovery strategy from existing drugs, is a time efficient approach to find effective drugs against SARS-CoV-2 in this emergency situation. Both experimental and computational approaches are being employed in drug repurposing with computational approaches becoming increasingly popular and efficient. In this study, we present a robust experimental design combining deep learning with molecular docking experiments to identify most promising candidates from the list of FDA approved drugs that can be repurposed to treat COVID-19. We have employed a deep learning based Drug Target Interaction (DTI) model, called DeepDTA, with few improvements to predict drug-protein binding affinities, represented as KIBA scores, for 2,440 FDA approved and 8,168 investigational drugs against 24 SARS-CoV-2 viral proteins. FDA approved drugs with the highest KIBA scores were selected for molecular docking simulations. We ran docking simulations for 168 selected drugs against 285 total predicted and/or experimentally proven active sites of all 24 SARS-CoV-2 viral proteins. We used a recently published open source AutoDock based high throughput screening platform virtualflow to reduce the time required to run around 50,000 docking simulations. A list of 49 most promising FDA approved drugs with best consensus KIBA scores and AutoDock vina binding affinity values against selected SARS-CoV-2 viral proteins is generated. Most importantly, anidulafungin, velpatasvir, glecaprevir, rifabutin, procaine penicillin G, tadalafil, riboflavin 5’-monophosphate, flavin adenine dinucleotide, terlipressin, desmopressin, elbasvir, oxatomide, enasidenib, edoxaban and selinexor demonstrate highest predicted inhibitory potential against key SARS-CoV-2 viral proteins.</p><p></p>


2020 ◽  
Author(s):  
Manos C. Vlasiou ◽  
Kyriakos I. Ioannou ◽  
Kyriaki S. Pafiti

Abstract In silico molecular docking took place in order to evaluate already FDA approved drugs for several diseases, as inhibitors for SARSCov-2 RNA- dependent polymerase. The best candidates with the highest binding affinities, evaluated for their energy determined by their electron density. Remdesivir and Saquinavir seemed to be good candidates for clinical trials but their predicted toxicity based on their calculated structures revealed that these two substances should evaluated more for their side effects


2020 ◽  
Author(s):  
Ananta Swargiary ◽  
AKALESH Verma ◽  
Manita Daimari ◽  
Mritunjoy Kumar Roy

The present study investigates the binding affinities of 61 FDA approved drugs against two key proteases of SARS-COV2, 3-chymotrypsin-like protease and papain-like protease. We also investigates the ADMET properties of the top 10 besting binding drugs to understand the drug likeness property.


2018 ◽  
Vol 14 (2) ◽  
pp. 106-116 ◽  
Author(s):  
Olujide O. Olubiyi ◽  
Maryam O. Olagunju ◽  
James O. Oni ◽  
Abidemi O. Olubiyi

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
David Gur ◽  
Theodor Chitlaru ◽  
Emanuelle Mamroud ◽  
Ayelet Zauberman

Yersinia pestis is a Gram-negative pathogen that causes plague, a devastating disease that kills millions worldwide. Although plague is efficiently treatable by recommended antibiotics, the time of antibiotic therapy initiation is critical, as high mortality rates have been observed if treatment is delayed for longer than 24 h after symptom onset. To overcome the emergence of antibiotic resistant strains, we attempted a systematic screening of Food and Drug Administration (FDA)-approved drugs to identify alternative compounds which may possess antibacterial activity against Y. pestis. Here, we describe a drug-repurposing approach, which led to the identification of two antibiotic-like activities of the anticancer drugs bleomycin sulfate and streptozocin that have the potential for designing novel antiplague therapy approaches. The inhibitory characteristics of these two drugs were further addressed as well as their efficiency in affecting the growth of Y. pestis strains resistant to doxycycline and ciprofloxacin, antibiotics recommended for plague treatment.


2019 ◽  
pp. 625-648 ◽  
Author(s):  
Carolina L. Belllera ◽  
María L. Sbaraglini ◽  
Lucas N. Alberca ◽  
Juan I. Alice ◽  
Alan Talevi

Sign in / Sign up

Export Citation Format

Share Document