Material adaptation technology for automated tape laying of aviation polymer composite material

2019 ◽  
Vol 0 (2) ◽  
pp. 22-28
Author(s):  
A.M. Kudrin ◽  
◽  
O.A. Karaeva ◽  
K.S. Gabriel’s ◽  
◽  
...  
2012 ◽  
Vol 70 (14) ◽  
pp. 1523 ◽  
Author(s):  
Longbin Qiu ◽  
Xuemei Sun ◽  
Zhibin Yang ◽  
Wenhan Guo ◽  
Huisheng Peng

2020 ◽  
Vol 17 (35) ◽  
pp. 599-608 ◽  
Author(s):  
Alexander A. OREKHOV ◽  
Yuri A. UTKIN ◽  
Polina F. PRONINA

One of the significant innovative technologies is the creation of large-sized structures that work for a long time in space and meet stringent restrictions on overall mass characteristics. Among these structures, in the first place, is the section of bearing truss (BT). This article presents the results of experimental studies of sectors of load-bearing trusses of mesh design for compression. Recently, composite mesh cylindrical shells are used as spacecraft housings. The mesh shell is a supporting structure to which the instruments and mechanisms of the spacecraft are attached. The truss section is made of cross-linked polymer composite material with carbon fibers. The objective of the tests is to confirm the possibility of creating a lightweight mesh construction using a carbon fiber reinforced polymer composite material. To achieve this goal, the authors were assigned the following tasks: selection of carbon filler of polymer composite materials (PCM); selection of PCM binder; determination of the degree of carbon fiber reinforcement; choice of the number and orientation paths of spiral ribs, number of ring ribs and the sizes of individual ribs. As a result of the research, the calculated indicators for ensuring the bearing capacity and stiffness under the application of axial compressive load were obtained. At the same time, with the determination of bearing capacity, the deformation characteristics of the structure were twice determined in order to confirm their repeatability, as well as linear nature of the dependence of axial and radial deformations as a result of the applied load.


2021 ◽  
pp. 74-82
Author(s):  
Valery Pechenyuk ◽  
◽  
Yuri Popov ◽  

The analysis of existing aircraft structures made of metal-polymer composite materials is carried out, and a list of them with passport characteristics is compiled. The Fokker F-27 Friendship, Boeing-777 and Airbus A380, which use ARALL and GLARE materials, were selected as the aircraft under study. Formulas are determined and the distribution of normal force flows between metal and composite elements in the composition of MPCM based on aluminum sheets (aluminum-fiberglass – SIAL- 1-1, SIAL-3-1 and SIAL-1441 (9/8)) and titanium alloys (samples of titanium-carbon fiber from the patent-Example 1 and Example 3). To determine these parameters, the formulas used for a composite structure made of different materials are used. On the basis of the specification known MPCM the modified formula mixture rule for calculating the strength of new materials with a given set of orientation angles of PCM and the presence of layers of sheet metal, a comparison with standard mechanical characteristics and to show the efficiency of these formulas. Using these formulas, you can determine the strength characteristics for an arbitrary composition of the MPCM package. The features of the choice of design permissible stresses for the design of the airframe of a mainline aircraft made of metal-polymer composite material are highlighted. The concept of designing aircraft airframe elements using MPCM is considered. The results of this work will allow us to determine the rational components of the metal-polymer composite material and the structure of their distribution in the airframe design at the preliminary design stage.


Sign in / Sign up

Export Citation Format

Share Document