adsorption complexes
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 17)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Vitalii A. Bunyaev ◽  
Alexey V. Shnitko ◽  
Maria G. Chernysheva ◽  
Alexander L. Ksenofontov ◽  
Gennadii A. Badun

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5294
Author(s):  
Alexey V. Bykov ◽  
Galina N. Demidenko ◽  
Linda Zh. Nikoshvili ◽  
Lioubov Kiwi-Minsker

Among different polymers nanostructured cross-linked aromatics have the greatest potential as catalytic supports due to their exceptional thermal and chemical stability and preservation of the active phase morphology. This work studies the ability of hyper-cross-linked polystyrene (HPS) to stabilize small Pdn and Ptn (n = 4 or 9) clusters. Unrestricted DFT calculations were carried out for benzene (BZ) adsorption at the BP level of theory using triple-zeta basis sets. The adsorption of BZ rings (stepwise from one to four) was found to result in noticeable gain in energy and stabilization of resulting adsorption complexes. Moreover, the interaction of metal clusters with HPS micropores was also addressed. For the first time, the incorporation of small clusters in the HPS structure was shown to influences its geometry resulting in the stabilization of polymer due to its partial relaxation.


2021 ◽  
Author(s):  
Nattida Maeboonruan ◽  
Bundet Boekfa ◽  
Thana Maihom ◽  
Piti Treesukol ◽  
Kanokwan Kongpatpanich ◽  
...  

Abstract Dehydration reactions are important in the petroleum and petrochemical industries, especially for the feedstock production. In this work, the catalytic activity of zeolites with different acidities for the dehydration of ethanol to ethylene was investigated by calculations on cluster models of three isomorphous B, Al, and Ga substitution of H-ZSM-5 zeolites. Detailed reaction profiles for the dehydration reaction, assuming either a stepwise or a concerted mechanism, were calculated by using the ONIOM(MP2:M06-2X) + SCREEP method. The adsorption energies of ethanol are -21.6, -28.1 and -27.7 kcal/mol on H-[B]-ZSM-5, H-[Al]-ZSM-5, H-[Ga]-ZSM-5 zeolites, respectively. The stepwise mechanism was preferred on all isomorphous zeolites. The activation energies for the ethoxy formation as the rate-determining step are in range of 40.0 to 42.3 kcal/mol. The results indicated that the order of catalytic activity were H-[Al]-ZSM-5 > H-[Ga]-ZSM-5 > H-[B]-ZSM-5 for catalyzing the dehydration of ethanol to ethylene. Besides the acid strength, the zeolite framework affected the reaction by stabilizing the reaction intermediates leading to more stable adsorption complexes and lower activation barriers.


Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Daniel G. Strawn

Sorption of chemicals onto soil particle surfaces is an important process controlling their availability for uptake by organisms and loss from soils to ground and surface waters. The mechanisms of chemical sorption are inner- and outer-sphere adsorption and precipitation onto mineral surfaces. Factors that determine the sorption behavior are properties of soil mineral and organic matter surfaces and properties of the sorbing chemicals (including valence, electron configuration, and hydrophobicity). Because soils are complex heterogeneous mixtures, measuring sorption mechanisms is challenging; however, advancements analytical methods have made direct determination of sorption mechanisms possible. In this review, historical and modern research that supports the mechanistic understanding of sorption mechanisms in soils is discussed. Sorption mechanisms covered include cation exchange, outer-sphere adsorption, inner-sphere adsorption, surface precipitation, and ternary adsorption complexes.


2021 ◽  
Vol 22 (1) ◽  
pp. 94-100
Author(s):  
L.M. Ushakova ◽  
E.M. Demianenko ◽  
M.I. Terets ◽  
V.V. Lobanov ◽  
N.T. Kartel

Quantum chemical simulation of the adsorption of N acetylneuraminic acid (NANA) on the surface of silica with the participation of the fructose molecule by the method of density functional theory B3LYP, 6-31G (d, p) was done. The influence of the solvent was taken into account in the supermolecular and continuum approximations, and a cluster approach was used for the adsorption complexes. NANA adsorption of the hydrated silica surface was considered as a process of replacement of water molecules on the silica surface by adsorbate molecules. Two schemes of influence of fructose molecule on NANA adsorption are considered. According to the first scheme, the hydrated NANA molecule interacts with the hydrated silicon-fructose adsorption complex. According to the second scheme, the cluster of hydrated silica interacts with the hydrated NANA-fructose complex. The energy of intermolecular interaction according to the scheme 1 is -9.2 kJ / mol, which is significantly lower compared to the same value with the participation of glucose or sucrose (-20.5 and -86.2 kJ / mol). Scheme 2 proved to be a thermodynamically unfavorable process, as its energy effect is +6.9 kJ / mol, in contrast to similar processes for glucose (-21.8) and sucrose (-87.7 kJ / mol). This confirms the experimental fact of the interaction of substances in a mixture of NANA with carbohydrates in relation to the interaction with silica in comparison with the interaction of substances with silica separately.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Eloise C. Lewis ◽  
Nelson Y. Dzade

The mobility of arsenic in aqueous systems can be controlled by its adsorption onto the surfaces of iron oxide minerals such as cobalt ferrite (Fe2CoO4). In this work, the adsorption energies, geometries, and vibrational properties of the most common form of As(III), arsenous acid (H3AsO3), onto the low-index (001), (110), and (111) surfaces of Fe2CoO4 have been investigated under dry and aqueous conditions using periodic density functional theory (DFT) calculations. The dry and hydroxylated surfaces of Fe2CoO4 steadily followed an order of increasing surface energy, and thus decreasing stability, of (001) < (111) < (110). Consequently, the favourability of H3AsO3 adsorption increased in the same order, favouring the least stable (110) surface. However, by analysis of the equilibrium crystal morphologies, this surface is unlikely to occur naturally. The surfaces were demonstrated to be further stabilised by the introduction of H2O/OH species, which coordinate the surface cations, providing a closer match to the bulk coordination of the surface species. The adsorption complexes of H3AsO3 on the hydroxylated Fe2CoO4 surfaces with the inclusion of explicit solvation molecules are found to be generally more stable than on the dry surfaces, demonstrating the importance of hydrogen-bonded interactions. Inner-sphere complexes involving bonds between the surface cations and molecular O atoms were strongly favoured over outer-sphere complexes. On the dry surfaces, deprotonated bidentate binuclear configurations were most thermodynamically favoured, whereas monodentate mononuclear configurations were typically more prevalent on the hydroxylated surfaces. Vibrational frequencies were analysed to ascertain the stabilities of the different adsorption complexes and to assign the As-O and O-H stretching modes of the adsorbed arsenic species. Our results highlight the importance of cobalt as a potential adsorbent for arsenic contaminated water treatment.


2020 ◽  
Vol 10 (23) ◽  
pp. 8589
Author(s):  
Montserrat R. Delgado

Variable-temperature infrared (VTIR) spectroscopy is an instrumental technique that enables structural characterization of gas-solid adsorption complexes by analysis of meaningful vibrational modes, and simultaneous determination of the standard enthalpy change (ΔH0) involved in the gas adsorption process, which allows one to quantify the stability of the corresponding complex. This is achieved by a van’t Hoff analysis of a set of IR spectra recorded over a sufficiently large temperature range. Herein, the use of this versatile spectroscopic technique is demonstrated by reviewing its application to the study of carbon monoxide, carbon dioxide and dinitrogen adsorption on several (alkaline) zeolites, which can be regarded as the archetype of periodic porous solids.


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Martine Castellà-Ventura ◽  
Alain Moissette ◽  
Emile Kassab

The Si/Al ratio and confinement effects of zeolite framework on energetics and vibrational frequencies of pyridine and 4,4′-bipyridine adsorbed on Brønsted acid sites in the straight channel of H-ZSM-5 are investigated by DFT calculations at the B3LYP and M06-2X+D3 levels. The straight channel of H-ZSM-5 is simulated by a cluster of 32 tetrahedral centers covering the intersection between straight and zigzag channels. Pyridine and 4,4′-bipyridine adsorption at two different sites in the intersection (open region) and/or in the narrow region situated between two intersections (closed region) is studied. For two Si/Al ratios (31, 15), the ion pair complexes formed by proton transfer upon pyridine and 4,4′-bipyridine adsorption in the open region and for the first time in the closed region are characterized. Our results indicate: (i) the stability for all adsorption complexes is essentially governed by the dispersive van der Waals interactions and the open region is energetically more favorable than the closed region owing to the predominance of the dispersive interactions over the steric constraints exerted by the confinement effects; (ii) as the Al centers are sufficiently spaced apart, Si/Al ratio does not influence pyridine adsorption energy, but significantly affects the adsorption energies and the relative stability of 4,4′-bipyridine complexes; (iii) neither Si/Al ratio nor confinement significantly influence pyridine and 4,4′-bipyridine vibrational frequencies within their complexes.


Sign in / Sign up

Export Citation Format

Share Document