scholarly journals Using an adaptive approach to the development of water purification system

Author(s):  
A. P. Levchuk ◽  
V. I. Maksin

In terms of water consumption from decentralized water supply systems there are a number of problematic aspects that negatively affect water quality, especially drinking water supply, namely: lack of modern control methods and integrated water treatment systems, qualified service personnel, long logistics of components and reagents, long distances to the final water consumer, inability to respond timely to the need of control laboratory equipment calibration and the failure of units and others. Unpredictable natural or man-made factors further complicate these problematic aspects. All this and the constant changes in the requirements to water quality and technological processes, leads to the search of new, modern approaches to solving such problems and issues of uncentralized drinking water supply. Therefore, this paper analyzes the current experience of developing small autonomous water purification systems for drinking water supply, which do not require constant presence of the operator and laboratory quality control of water and can work automatically in difficult conditions. Also a rationale for technological and structural design as well as the description of adaptive water purification systems using an adaptive approach to the structure as a whole, individual units, assemblies and to the power supply of electrolytic processes, giving it adaptive properties for the use in modern drinking water treatment is provided in the paper. The adaptive function of neutralizing the manifestation of dangerous biological agents and the efficiency of the system is designed for man-made and natural emergencies and water disinfection from bacteria and viruses. The pH was chosen as the main control parameter of water quality. The system uses an effective process of synthesis by electrolytic methods of coagulant, disinfectant and destructive effects on hazardous biological agents - pulsed current with changing parameters and shape. In case a working solution changes the pH, the parameters of the pulsed load current are changed by the adaptive power supply to the most efficient one. The proposed approach and model of the system are effective and preventive and is offered as an option to improve existing water treatment systems for drinking water supply.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1766
Author(s):  
Mario Maiolo ◽  
Daniela Pantusa

Vulnerability of drinking water supply systems (DWSSs) depends on different factors such as failures, loss of security, man-made threats, and the change and deterioration of supply-water quality. Currently, the lifespan of several DWSSs worldwide has been exceeded, exasperating these issues. The monitoring activity and the transparency of information on water availability and quality are becoming increasingly important in accordance with the national regulations and standards, and with guidelines of the World Health Organization (WHO). These activities can be considered as support and guidance tools for identifying health-related risks, for building a safe management of drinking water supply systems, and for improved user confidence in the consumption of tap water. In this context, in the present work an analysis of the quality monitoring data of DWSSs was carried out using multivariate techniques. The analysis considered several chemical–physical parameters collected in the period 2013–2020 for some DWSSs in the Emilia-Romagna region, Italy. Principal component analysis (PCA) and cluster analysis (CA) methods were used to process and reduce the dimensionality of the data, to highlight the parameters that have the greatest influence on the qualitative state of the supplied water and to identify clusters.


2021 ◽  
Vol 14 (1) ◽  
pp. 1-43
Author(s):  
Jolijn van Engelenburg ◽  
Erik van Slobbe ◽  
Adriaan J. Teuling ◽  
Remko Uijlenhoet ◽  
Petra Hellegers

Abstract. Developments such as climate change and a growing demand for drinking water threaten the sustainability of drinking water supply worldwide. To deal with this threat, adaptation of drinking water supply systems is imperative, not only on a global and national scale but particularly on a local scale. This investigation sought to establish characteristics that describe the sustainability of local drinking water supply. The hypothesis of this research was that sustainability characteristics depend on the context that is analysed, and therefore, a variety of cases must be analysed to reach a better understanding of the sustainability of drinking water supply in the Netherlands. Therefore, three divergent cases on drinking water supply in the Netherlands were analysed. One case related to a short-term development (2018 summer drought), and two concerned long-term phenomena (changes in water quality and growth in drinking water demand). We used an integrated systems approach, describing the local drinking water supply system in terms of hydrological, technical, and socio-economic characteristics that determine the sustainability of a local drinking water supply system. To gain a perspective on the case study findings that are broader than the Dutch context, the sustainability aspects identified were paired with global aspects concerning sustainable drinking water supply. This resulted in the following set of hydrological, technical, and socio-economic sustainability characteristics: (1) water quality, water resource availability, and impact of drinking water abstraction; (2) reliability and resilience of the technical system and energy use and environmental impact; (3) drinking water availability, water governance, and land and water use. Elaboration of these sustainability characteristics and criteria into a sustainability assessment can provide information on the challenges and trade-offs inherent in the sustainable development and management of a local drinking water supply system.


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


Sign in / Sign up

Export Citation Format

Share Document