Event-Related Potentials to Match and Mismatch Letters in an Immediate Item Recognition Task

1983 ◽  
Vol 18 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Linda R. Warren ◽  
Steven S. Wideman
2019 ◽  
Author(s):  
Nicole S. McKay ◽  
David Moreau ◽  
Paul M. Corballis ◽  
Ian J. Kirk

AbstractThe Val66Met single nucleotide polymorphism (SNP) has previously been reported to impact performance on recognition memory tasks. Whether the two subprocesses of recognition—familiarity and recollection—are differentially impacted by the Val66Met SNP remains unknown. Using event-related potentials (ERPs) recorded during a source memory task, we attempted to dissociate these two subprocesses. Behaviourally, we used participants’ scores on an item-recognition subtask as a measure of familiarity, and participants’ scores on a source-recognition subtask as a measure of recollection. Our findings reveal that Val/Val individuals outperform Met allele carriers on the item-but not the source-recognition task. Electrophysiologically, we were interested in the N400, an early frontal component previously linked to familiarity, and the late positive complex (LPC), a posterior component linked to recollection. We found evidence for Val/Val individuals having larger amplitudes of the LPC compared to Met allele carriers, and evidence for no difference in the N400 amplitudes of these groups. Based on the lack of dissociation between familiarity- and recollection-specific ERPs at the LPC time window, we argue that our behavioural and ERP results might reflect better item-recognition for Val/Val individuals compared to Met allele carriers. We further suggest that both these results reflect differences related to familiarity, rather than recollection.


2019 ◽  
Author(s):  
Solange Denervaud ◽  
Jean-François Knebel ◽  
Emeline Mullier ◽  
Patric Hagmann ◽  
Micah M. Murray

Within an inherently dynamic environment, unexpected outcomes are part of daily life. Performance monitoring allows us to detect these events and adjust behavior accordingly. The necessity of such an optimal functioning has made error-monitoring a prominent topic of research over the last decades. Event-related potentials (ERPs) have differentiated between two brain components involved in error-monitoring: the error-related negativity (ERN) and error-related positivity (Pe) that are thought to reflect detection vs. emotional/motivational processing of errors, respectively. Both ERN and Pe depend on the protracted maturation of the frontal cortices and anterior cingulate through adolescence. To our knowledge, the impact of schooling pedagogy on error-monitoring and its brain mechanisms remains unknown and was the focus of the present study. Swiss schoolchildren completed a continuous recognition task while 64-channel EEG was recorded and later analyzed within an electrical neuroimaging framework. They were enrolled either in a Montessori curriculum (N=13), consisting of self-directed learning through trial-and-error activities with sensory materials, or a traditional curriculum (N=14), focused on externally driven activities mainly based on reward feedback. The two groups were controlled for age, gender, socio-economic status, parental educational style, and scores of fluid intelligence. The ERN was significantly enhanced in Montessori schoolchildren (driven by a larger response to errors), with source estimation differences localized to the cuneus and precuneus. In contrast, the Pe was enhanced in traditional schoolchildren (driven by a larger response to correct trials), with source estimation differences localized to the ventral anterior cingulate. Receiver operating characteristic (ROC) analysis demonstrated that the ERN and Pe could reliably classify if a child was following a Montessori or traditional curriculum. Brain activity subserving error-monitoring is modulated differently according to school pedagogy.


1994 ◽  
Vol 78 (3) ◽  
pp. 891-897
Author(s):  
Don Diener

Examination of the correlations among measures of performance on Sternberg's item-recognition task by 136 students showed a low correlation of. 38 between the slopes of the functions relating response latency to set size for positive and negative responses. The correlation between the mean latency of positive and negative responses was substantially higher (r =. 91) than that of the slopes. The low correlation between the slopes suggests a mechanism such as an adjustable response criterion that results in a tradeoff between response latency on positive and negative trials.


2019 ◽  
Vol 9 (5) ◽  
pp. 109 ◽  
Author(s):  
John F. Shelley-Tremblay ◽  
Joshua C. Eyer ◽  
Benjamin D. Hill

Symptom exaggeration and feigned cognitive impairment occur commonly in forensic and medicolegal evaluations. As a result, methods to detect feigned cognitive impairment are an indispensable component of neuropsychological assessments. This study reports the results of two neurophysiological experiments using a forced-choice recognition task built from the stimuli of the Word Memory Test and Medical Symptom Validity Test as well as a new linguistically informed stimulus set. Participant volunteers were instructed either to do their best or to feign cognitive impairment consistent with a mild traumatic brain injury while their brain activity was monitored using event-related potentials (ERP). Experiment 1 varied instructions across individuals, whereas Experiment 2 varied instructions within individuals. The target brain component was a positive deflection indicating stimulus recognition that occurs approximately 300 ms after exposure to a stimulus (i.e., the P300). Multimodal comparison (P300 amplitude to behavioral accuracy) allowed the detection of feigned cognitive impairment. Results indicate that, for correct responses, P300s were equivalent for the simulated malingering and good effort conditions. However, for incorrect responses, feigned impairment produced reliable but significantly reduced P300 amplitudes. Although the P300 is an automatic index of recognition—even when knowledge is hidden—its amplitude appears capable of modulation by feigning strategies. Implications of this finding are discussed for research and clinical applications.


1995 ◽  
Vol 1 (1) ◽  
pp. 3-9 ◽  
Author(s):  
James T. Becker ◽  
Rocco Caldararo ◽  
Alan D. Baddeley ◽  
Mary Amanda Dew ◽  
William C. Heindel ◽  
...  

AbstractIndividuals infected with Human Immunodeficiency Virus (HIV) and having cognitive impairment have been described as having slow mentation. Data supporting this proposition come from a variety of sources, including Sternberg's (1966) item recognition memory task. The procedure nominally provides an index of speed of mental operations, independent from input/output demands. However, since the original use of this procedure in the 1960s, advances in cognitive psychology have revealed many of its limitations. The purpose of the present study was to examine the psychometric characteristics of this task. Each participant performed the Sternberg item recognition task twice, 6 mo apart. The stability of the estimate of the slope of regression equations and for zero intercept ranged from excellent (r = .87) to poor (r = .30), and the data from many individual subjects could not be reliably modelled using multiple linear regression techniques. These data, as well as those from previous research, demonstrate the limited practical use of this task in clinical samples. Furthermore, as cognitive psychological theory has advanced in the past 30 yr, the conceptual underpinnings of the procedure have essentially evaporated. (JINS, 1995, 1, 3–9).


2021 ◽  
Vol 14 (2) ◽  
pp. 171-192
Author(s):  
Nadezhda A. Mkrtychian ◽  
Svetlana N. Kostromina ◽  
Daria S. Gnedykh ◽  
Diana M. Tsvetova ◽  
Evgeny D. Blagovechtchenski ◽  
...  

Background. A rich vocabulary supports human achievements in socio-economic activities, education, and communication. It is therefore important to clarify the nature of language acquisition as a complex multidimensional process. However, both the psychological and neurophysiological mechanisms underpinning language learning, as well as the links between them, are still poorly understood. Objective. This study aims to explore the psychological and neurophysiological correlates of successful word acquisition in a person’s native language. Design. Thirty adults read sentences with novel nouns, following which the participants’ electroencephalograms were recorded during a word-reading task. Event-related potentials in response to novel words and alpha oscillation parameters (amplitude, variability, and long-range temporal correlation dynamics) were analyzed. Learning outcomes were assessed at the lexical and semantic levels. Psychological variables measured using Amthauer’s test (verbal abilities), BIS/BAS scales (motivation), and the MSTAT-1 (ambiguity tolerance) and alpha oscillation parameters were factored. Results. Better recognition of novel words was related to two factors which had high factor loadings for all measured alpha oscillation parameters, indicating the role of attention networks and respective neural activity for enabling information processing. More successful learners had lower P200 amplitude, which also suggests higher attention-system involvement. Another factor predicted better acquisition of word meanings for less ambiguity-tolerant students, while the factor which pooled logical conceptual thinking ability and persistence in goal-reaching, positively correlated with acquisition of both word forms and meanings. Conclusion. The psychological factors predominantly correlated with word-learning success in semantic tasks, while neurophysiological variables were linked to performance in the recognition task.


2021 ◽  
Vol 15 ◽  
Author(s):  
Junbo Wang ◽  
Jiahao Liu ◽  
Kaiyin Lai ◽  
Qi Zhang ◽  
Yiqing Zheng ◽  
...  

The mechanism underlying visual-induced auditory interaction is still under discussion. Here, we provide evidence that the mirror mechanism underlies visual–auditory interactions. In this study, visual stimuli were divided into two major groups—mirror stimuli that were able to activate mirror neurons and non-mirror stimuli that were not able to activate mirror neurons. The two groups were further divided into six subgroups as follows: visual speech-related mirror stimuli, visual speech-irrelevant mirror stimuli, and non-mirror stimuli with four different luminance levels. Participants were 25 children with cochlear implants (CIs) who underwent an event-related potential (ERP) and speech recognition task. The main results were as follows: (1) there were significant differences in P1, N1, and P2 ERPs between mirror stimuli and non-mirror stimuli; (2) these ERP differences between mirror and non-mirror stimuli were partly driven by Brodmann areas 41 and 42 in the superior temporal gyrus; (3) ERP component differences between visual speech-related mirror and non-mirror stimuli were partly driven by Brodmann area 39 (visual speech area), which was not observed when comparing the visual speech-irrelevant stimulus and non-mirror groups; and (4) ERPs evoked by visual speech-related mirror stimuli had more components correlated with speech recognition than ERPs evoked by non-mirror stimuli, while ERPs evoked by speech-irrelevant mirror stimuli were not significantly different to those induced by the non-mirror stimuli. These results indicate the following: (1) mirror and non-mirror stimuli differ in their associated neural activation; (2) the visual–auditory interaction possibly led to ERP differences, as Brodmann areas 41 and 42 constitute the primary auditory cortex; (3) mirror neurons could be responsible for the ERP differences, considering that Brodmann area 39 is associated with processing information about speech-related mirror stimuli; and (4) ERPs evoked by visual speech-related mirror stimuli could better reflect speech recognition ability. These results support the hypothesis that a mirror mechanism underlies visual–auditory interactions.


2020 ◽  
Author(s):  
Song Zhao ◽  
Chengzhi Feng ◽  
Xinyin Huang ◽  
Yijun Wang ◽  
Wenfeng Feng

Abstract The present study recorded event-related potentials (ERPs) in a visual object-recognition task under the attentional blink paradigm to explore the temporal dynamics of the cross-modal boost on attentional blink and whether this auditory benefit would be modulated by semantic congruency between T2 and the simultaneous sound. Behaviorally, the present study showed that not only a semantically congruent but also a semantically incongruent sound improved T2 discrimination during the attentional blink interval, whereas the enhancement was larger for the congruent sound. The ERP results revealed that the behavioral improvements induced by both the semantically congruent and incongruent sounds were closely associated with an early cross-modal interaction on the occipital N195 (192–228 ms). In contrast, the lower T2 accuracy for the incongruent than congruent condition was accompanied by a larger late occurring cento-parietal N440 (424–448 ms). These findings suggest that the cross-modal boost on attentional blink is hierarchical: the task-irrelevant but simultaneous sound, irrespective of its semantic relevance, firstly enables T2 to escape the attentional blink via cross-modally strengthening the early stage of visual object-recognition processing, whereas the semantic conflict of the sound begins to interfere with visual awareness only at a later stage when the representation of visual object is extracted.


Sign in / Sign up

Export Citation Format

Share Document