Statistical Analysis of the Reproducibility of the Intravenous Glucose Tolerance Test and the Serum Insulin Response to This Test in Middle-Aged Men

1975 ◽  
Vol 35 (4) ◽  
pp. 331-337 ◽  
Author(s):  
H. Hedstrand ◽  
J. Boberg
Life Sciences ◽  
2005 ◽  
Vol 77 (11) ◽  
pp. 1283-1292 ◽  
Author(s):  
Esther H.E.M. van de Wall ◽  
Dorte X. Gram ◽  
Jan H. Strubbe ◽  
Anton J.W. Scheurink ◽  
Jaap M. Koolhaas

1995 ◽  
Vol 268 (2) ◽  
pp. R475-R479 ◽  
Author(s):  
B. Balkan ◽  
B. E. Dunning

Prolonged hyperglycemia impairs the in vitro insulin release by islets of Langerhans in response to glucose but exaggerates the in vivo insulin response. We hypothesized that this discrepancy results from increased vagal stimulation of the islets. Conscious chronically cannulated rats were infused with glucose (15 mg/min) or saline for 48 h. Three hours thereafter, an intravenous glucose tolerance test was performed with or without prior injection of atropine (0.2 mg). Atropine markedly (> 70%) reduced the insulin response in glucose-infused, but not in saline-infused, rats. Glucose-infused rats displayed basal hypoglycemia but normal glucose excursions during an intravenous glucose tolerance test. It is concluded that prolonged hyperglycemia produces exaggerated muscarinic activation of the beta-cells that will persist > or = 3 h after the termination of the glucose infusion and normalizes in vivo insulin secretion. It is possible that increased parasympathetic activation of the pancreas might constitute a general mechanism to maintain insulin output when the demand for insulin exceeds the inherent beta-cell responsiveness.


1960 ◽  
Vol XXXIII (II) ◽  
pp. 157-167
Author(s):  
T. Rodari ◽  
G. Specchia

ABSTRACT The double intravenous glucose tolerance test does not modify the assimilation coefficient in normal and thin diabetic subjects. On the contrary, in fat diabetic subjects the second coefficient of assimilation increases significantly, but not the first one. From these researches it is evident that the valuation of glucose assimilation by double venous hyperglycaemic test indicates the functional behaviour of the pancreas in different diabetic states. The interpretation of this behaviour of pancreatic islet response to the double venous hyperglycaemic test is discussed.


Sign in / Sign up

Export Citation Format

Share Document