intravenous glucose tolerance test
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 33)

H-INDEX

40
(FIVE YEARS 4)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262584
Author(s):  
Hannah M. Kinsella ◽  
Laura D. Hostnik ◽  
Hailey A. Snyder ◽  
Sarah E. Mazur ◽  
Ahmed M. Kamr ◽  
...  

The equine neonate is considered to have impaired glucose tolerance due to delayed maturation of the pancreatic endocrine system. Few studies have investigated insulin sensitivity in newborn foals using dynamic testing methods. The objective of this study was to assess insulin sensitivity by comparing the insulin-modified frequently sampled intravenous glucose tolerance test (I-FSIGTT) between neonatal foals and adult horses. This study was performed on healthy neonatal foals (n = 12), 24 to 60 hours of age, and horses (n = 8), 3 to 14 years of age using dextrose (300 mg/kg IV) and insulin (0.02 IU/kg IV). Insulin sensitivity (SI), acute insulin response to glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) were calculated using minimal model analysis. Proxy measurements were calculated using fasting insulin and glucose concentrations. Nonparametric statistical methods were used for analysis and reported as median and interquartile range (IQR). SI was significantly higher in foals (18.3 L·min-1· μIU-1 [13.4–28.4]) compared to horses (0.9 L·min-1· μIU-1 [0.5–1.1]); (p < 0.0001). DI was higher in foals (12 × 103 [8 × 103−14 × 103]) compared to horses (4 × 102 [2 × 102−7 × 102]); (p < 0.0001). AIRg and Sg were not different between foals and horses. The modified insulin to glucose ratio (MIRG) was lower in foals (1.72 μIUinsulin2/10·L·mgglucose [1.43–2.68]) compared to horses (3.91 μIU insulin2/10·L·mgglucose [2.57–7.89]); (p = 0.009). The homeostasis model assessment of beta cell function (HOMA-BC%) was higher in horses (78.4% [43–116]) compared to foals (23.2% [17.8–42.2]); (p = 0.0096). Our results suggest that healthy neonatal foals are insulin sensitive in the first days of life, which contradicts current literature regarding the equine neonate. Newborn foals may be more insulin sensitive immediately after birth as an evolutionary adaptation to conserve energy during the transition to extrauterine life.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Yuan ◽  
Shuoning Song ◽  
Tianyi Zhao ◽  
Yanbei Duo ◽  
Shihan Wang ◽  
...  

BackgroundThe increase in diabetes worldwide is alarming. Decreased acute insulin response to intravenous glucose tolerance test (IVGTT) during first-phase insulin secretion (FPIS) is a characteristic of diabetes. However, knowledge of the insulin secretion characteristics identified by different time to glucose peak in subjects with different metabolic state is sparse.AimsThis study aimed to find different patterns of FPIS in subjects with normal glucose tolerance (NGT) and analyzed the relationship between insulin secretion patterns and the risk for development of type 2 diabetes mellitus (T2DM).MethodsA total of 126 subjects were divided into three groups during a 10-min IVGTT, including NGT with time to glucose peak after 3 min (G1, n = 21), NGT with time to glucose peak at 3 min (G2, n = 95), and prediabetes or diabetes with time to glucose peak at 3 min (G3, n = 10). Glucose, insulin, and C-peptide concentrations at 0, 3, 5, 7, and 10 min during the IVGTT were tested. IVGTT-based indices were calculated to evaluate the insulin secretion and insulin sensitivity.ResultsAge, body mass index (BMI), waist-to-hip ratio, triglyceride (TG), and hemoglobin A1c (HbA1c) of subjects were gradually higher, while high-density lipoprotein cholesterol (HDL-C) was gradually lower from G1 to G3 (p for linear trend &lt;0.05), and the differences between G1 and G2 were also statistically significant (p &lt; 0.05). Glucose peak of most participants in G1 converged at 5 min, and the curves shape of insulin and C-peptide in G2 were the sharpest among three groups. There was no significant difference in all IVGTT-based indices between G1 and G2, but AUCIns, AUCIns/AUCGlu, and △Ins3/△Glu3 in G2 were the highest, and the p-value for linear trend of those indices among three groups were statistically significant (p &lt; 0.05).ConclusionsTwo patterns of FPIS were in subjects with NGT, while subjects with later time to glucose peak during FPIS might be less likely to develop T2DM in the future.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 311-312
Author(s):  
Lindsey Eaton ◽  
Amanda Barney ◽  
Jordan Lally ◽  
Rachael Gately ◽  
Maria L Hoffman

Abstract Calves are prone to health issues with high mortality observed during the first 3 weeks of life. We hypothesized that dam milk production levels and/or mastitis infection during gestation will lead to reduced insulin production and increased circulating glucose concentration in response to an Intravenous Glucose Tolerance Test (IVGTT) in young dairy bull calves. Calves (n = 45) were selected from dams classified has high producers (HI; Top 25% for herd M305; n = 7), high producers with high somatic cell count (SCC; HIMAST; SCC test during gestation over 200,000 cells/mL; n = 15), moderate producers (MOD; lower 60% for herd M305; n =17) or moderate producers with high SCC (MODMAST; n = 6). IVGTT were performed on the calves at 7 weeks of age. Blood samples were collected prior to (-30, -15 and 0 min) infusion of glucose. After glucose (0.15 grams /kg bw) administration, samples were collected at 2, 5, 10, 15, 30, 60, and 120-minutes post infusion. Serum insulin and glucose concentrations were determined at Cornell Veterinary Medical Diagnostic Laboratory (Ithica, NY). Data were analysed in SAS using Proc Mixed. Insulin:glucose ratio was analysed using Proc Mixed with repeated measures for treatment x time. No effect of maternal milk production and/or mastitis infection during gestation was observed on calf baseline insulin, insulin AUC, baseline glucose or glucose AUC (P ≥ 0.12). Similarly, no difference in Insulin:Glucose ratio was observed in these calves (P = 0.66). In conclusion, high maternal milk production and/or mastitis infection may not have an effect on circulating insulin production in calves in response to an IVGTT. Correlation analyses will be performed on these data, as well as additional analyses, to determine if insulin sensitivity or response (ie: phase 1 response) was altered further.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 973
Author(s):  
Micaela Morettini ◽  
Agnese Piersanti ◽  
Laura Burattini ◽  
Giovanni Pacini ◽  
Christian Göbl ◽  
...  

The aim of this study was to investigate whether incretins, at physiological levels, affect hepatic and/or extrahepatic insulin clearance. Hepatic and extrahepatic insulin clearance was studied in 31 double incretin receptor knockout (DIRKO) and 45 wild-type (WT) mice, which underwent an Intravenous Glucose Tolerance Test (IVGTT). A novel methodology based on mathematical modeling was designed to provide two sets of values (FEL-P1, CLP-P1; FEL-P2, CLP-P2) accounting for hepatic and extrahepatic clearance in the IVGTT first and second phases, respectively, plus the respective total clearances, CLT-P1 and CLT-P2. A statistically significant difference between DIRKO and WT was found in CLT-P1 (0.61 [0.48–0.82] vs. 0.51 [0.46–0.65] (median [interquartile range]); p = 0.02), which was reflected in the peripheral component, CLP-P1 (0.18 [0.13–0.27] vs. 0.15 [0.11–0.22]; p = 0.04), but not in the hepatic component, FEL-P1 (29.7 [26.7–34.9] vs. 28.9 [25.7–32.0]; p = 0.18). No difference was detected between DIRKO and WT in CLT-P2 (1.38 [1.13–1.75] vs. 1.69 [1.48–1.87]; p = 0.10), neither in CLP-P2 (0.72 [0.64–0.81] vs. 0.79 [0.69–0.87]; p = 0.27) nor in FEL-P2 (37.8 [35.1–43.1] vs. 39.8 [35.8–44.2]; p = 0.46). In conclusion, our findings suggest that the higher insulin clearance observed in DIRKO compared with WT during the IVGTT first phase may be due to its extrahepatic component.


Endocrinology ◽  
2021 ◽  
Author(s):  
Marilyn Ader ◽  
Richard N Bergman

Abstract Insulin resistance (IR) engenders a compensatory increase in plasma insulin. Inadequate compensation is a primary element in the pathogenesis of Type 2 diabetes. The signal which heralds developing IR and initiates hyperinsulinemic compensation is not known. It has often been assumed to be increased glucose. We tested this assumption by determining whether development of fasting and/or glucose-stimulated hyperinsulinemia with diet-induced insulin resistance occurs because of concomitant elevation of glycemia. Male dogs (n=58) were fed a hypercaloric, fat-supplemented diet for 6 wks. Dogs underwent MRI to quantify total and regional (visceral, subcutaneous) adiposity as well as euglycemic hyperinsulinemic clamps. A subset of animals also underwent an insulin-modified intravenous glucose tolerance test (IVGTT) to assess insulin sensitivity, acute insulin response (AIRg), and glucose effectiveness. Fat feeding caused modest weight gain, increased visceral and subcutaneous fat, and IR at both peripheral and hepatic levels. Hyperinsulinemic compensation was observed in fasting levels as well as increased AIRg. However, we observed absolutely no increase in carefully measured fasting, evening (6-8 pm) or nocturnal glycemia (2-4 am). IR and hyperinsulinemia occurred despite no elevation in 24-hour glucose. Compensatory development of hyperinsulinemia during diet-induced insulin resistance occurs without elevated fasting or 24-hour glycemia. These data refute the idea that glucose itself is a requisite signal for β-cell upregulation. Alternative feedback mechanisms need to be identified.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A9-A10
Author(s):  
Zahra Sarrafan-Chaharsoughi ◽  
Jordan A Levine ◽  
Tushar P Patel ◽  
Sheila M Brady ◽  
K Karthik Chivukula ◽  
...  

Abstract Background: Obesity-associated inflammation promotes adipose tissue (AT) dysfunction and contributes to the progression of type 2 diabetes and cardiovascular disease. Recent clinical studies have demonstrated that colchicine may improve metabolic and cardiovascular outcomes; however, colchicine’s effects on metabolic and inflammatory measures within AT remain unclear. Methods: The aim of this study was to examine if colchicine’s anti-inflammatory effects would improve measures of lipolysis and immune cell populations in subcutaneous AT (SAT). This is a secondary analysis of a double-blind, randomized, placebo-controlled pilot study in which 40 nondiabetic adults with obesity and metabolic syndrome (MetS) were randomized to colchicine 0.6mg or placebo twice daily for 3 months. Blood samples for insulin, glucose, and free fatty acids were collected in the fasted state and during a frequently-sampled intravenous glucose tolerance test. Noninsulin-suppressible (l0), insulin-suppressible (l2), and maximal (l0+l2) lipolysis rates were calculated by minimal model analysis. Body composition was determined by DXA. SAT immune cell populations were characterized by flow cytometry fluorescence-activated single cell sorting of the stromovascular fractions obtained after collagenase digestion of SAT samples obtained using a mini-liposuction technique pre- and post-intervention. Results: Data from 18 subjects in the colchicine group (Mean ± SD: age 48.4 ± 13.5 y; BMI 39.3 ± 6.3 kg/m2; sex: female 72.2%) and 18 subjects in the placebo group (age 44.7 ± 10.2 y; BMI 41.8 ± 8.2 kg/m2; sex: female 77.8%) were available for this study. Colchicine treatment significantly reduced l2 (p = 0.04) and l0+l2 (p = 0.04) versus placebo. These changes were significantly associated with reductions in systemic inflammation, including the changes in high-sensitivity C-reactive protein concentrations, white blood cell count, circulating monocyte and neutrophil populations, and the neutrophil-lymphocyte ratio (p’s &lt; 0.015). Colchicine did not significantly alter SAT immune cell population distributions (p’s &gt; 0.05). Conclusions: In adults with obesity and MetS, colchicine may improve insulin action at the level of AT. These improvements were positively associated with the suppression of systemic inflammation. However, no local AT inflammatory cell populations were significantly affected by colchicine use in our study, suggesting that colchicine’s systemic, rather than local, anti-inflammatory effects may be more consequential in ameliorating AT metabolic pathways in MetS. Further studies are warranted to elucidate the biological mechanisms underlying colchicine’s effects in AT, as these investigations could potentially shed light on treatments to improve metabolic outcomes in human obesity.


2021 ◽  
pp. 153537022110094
Author(s):  
Ibiye Owei ◽  
Nkiru Umekwe ◽  
Frankie Stentz ◽  
Jim Wan ◽  
Sam Dagogo-Jack

The ability to predict prediabetes, which affects ∼90 million adults in the US and ∼400 million adults worldwide, would be valuable to public health. Acylcarnitines, fatty acid metabolites, have been associated with type 2 diabetes risk in cross-sectional studies of mostly Caucasian subjects, but prospective studies on their link to prediabetes in diverse populations are lacking. Here, we determined the association of plasma acylcarnitines with incident prediabetes in African Americans and European Americans enrolled in a prospective study. We analyzed 45 acylcarnitines in baseline plasma samples from 70 adults (35 African-American, 35 European-American) with incident prediabetes (progressors) and 70 matched controls (non-progressors) during 5.5-year (mean 2.6 years) follow-up in the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study. Incident prediabetes (impaired fasting glucose/impaired glucose tolerance) was confirmed with OGTT. We measured acylcarnitines using tandem mass spectrometry, insulin sensitivity by hyperinsulinemic euglycemic clamp, and insulin secretion using intravenous glucose tolerance test. The results showed that progressors and non-progressors during POP-ABC study follow-up were concordant for 36 acylcarnitines and discordant for nine others. In logistic regression models, beta-hydroxy butyryl carnitine (C4-OH), 3-hydroxy-isovaleryl carnitine/malonyl carnitine (C5-OH/C3-DC), and octenoyl carnitine (C8:1) were the only significant predictors of incident prediabetes. The combined cut-off plasma levels of <0.03 micromol/L for C4-OH, <0.03 micromol/L for C5-OH/C3-DC, and >0.25 micromol/L for C8:1 acylcarnitines predicted incident prediabetes with 81.9% sensitivity and 65.2% specificity. Thus, circulating levels of one medium-chain and two short-chain acylcarnitines may be sensitive biomarkers for the risk of incident prediabetes among initially normoglycemic individuals with parental history of type 2 diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joon Ha ◽  
Ranganath Muniyappa ◽  
Arthur S. Sherman ◽  
Michael J. Quon

We address a problem with the Bergman-Cobelli Minimal Model, which has been used for 40 years to estimate SI during an intravenous glucose tolerance test (IVGTT). During the IVGTT blood glucose and insulin concentrations are measured in response to an acute intravenous glucose load. Insulin secretion is often assessed by the area under the insulin curve during the first few minutes (Acute Insulin Response, AIR). The issue addressed here is that we have found in simulated IVGTTs, representing certain contexts, Minimal Model estimates of SI are inversely related to AIR, resulting in artifactually lower SI. This may apply to Minimal Model studies reporting lower SI in Blacks than in Whites, a putative explanation for increased risk of T2D in Blacks. The hyperinsulinemic euglycemic clamp (HIEC), the reference method for assessing insulin sensitivity, by contrast generally does not show differences in insulin sensitivity between these groups. The reason for this difficulty is that glucose rises rapidly at the start of the IVGTT and reaches levels independent of SI, whereas insulin during this time is determined by AIR. The minimal model in effect interprets this combination as low insulin sensitivity even when actual insulin sensitivity is unchanged. This happens in particular when high AIR results from increased number of readily releasable insulin granules, which may occur in Blacks. We conclude that caution should be taken when comparing estimates of SI between Blacks and Whites.


Author(s):  
Eran Brown ◽  
Koya Ozawa ◽  
Federico Moccetti ◽  
Amanda Vinson ◽  
James Hodovan ◽  
...  

Background Platelet–endothelial interactions are thought to contribute to early atherogenesis. These interactions are potentiated by oxidative stress. We used in vivo molecular imaging to test the hypothesis that platelet–endothelial interactions occur at early stages of plaque development in obese, insulin‐resistant nonhuman primates, and are suppressed by NADPH‐oxidase‐2 inhibition. Methods and Results Six adult rhesus macaques fed a Western‐style diet for a median of 4.0 years were studied at baseline and after 8 weeks of therapy with the NADPH‐oxidase‐2‐inhibitor apocynin (50 mg/kg per day). Six lean control animals were also studied. Measurements included intravenous glucose tolerance test, body composition by dual‐energy X‐ray absorptiometry, carotid intimal medial thickness, carotid artery contrast ultrasound molecular imaging for platelet GPIbα (glycoprotein‐ Ibα) and vascular cell adhesion molecule‐1, and blood oxidative markers on mass spectrometry. Compared with lean controls, animals on a Western‐style diet were obese (median body mass: 16.0 versus 8.7 kg, P =0.003; median truncal fat: 49% versus 20%, P =0.002), were insulin resistant (4‐fold higher insulin–glucose area under the curve on intravenous glucose tolerance test, P =0.002), had 40% larger carotid intimal medial thickness ( P =0.004), and exhibited oxidative signatures on proteomics. In obese but not lean animals, signal enhancement on molecular imaging was significantly elevated for GPIbα and vascular cell adhesion molecule‐1. The signal correlated modestly with intimal medial thickness but not with the degree of insulin resistance. Apocynin significantly ( P <0.01) reduced median signal for GPIbα by >80% and vascular cell adhesion molecule‐1 signal by 75%, but did not affect intimal medial thickness, body mass, or intravenous glucose tolerance test results. Conclusion In nonhuman primates, diet‐induced obesity and insulin resistance leads to platelet–endothelial adhesion at early atherosclerotic lesion sites, which is associated with the expression of pro‐inflammatory adhesion molecules. These responses appear to be mediated, in part, through oxidative pathways.


2021 ◽  
Vol 13 (1) ◽  
pp. e2021021
Author(s):  
Vincenzo De Sanctis

Summary. Objective: To  study the function of the endocrine pancreas in transfusion-dependent ?-thalassemia (?-TDT) patients with normal oral glucose tolerance test (OGTT) and hypoinsulinemia. Patients and methods: Seven ?-TDT patients  (mean age 22.4 ± 4.2 years) with normal glucose tolerance test (NGT) and poor insulin response (hypoinsulinemia) to OGTT,  not associated with ?-cell autoimmunity, were referred for a second opinion to an Italian Centre, part of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A). In this pilot study,  the first-phase insulin response (FPIR), expressed as the sum of 1 and  3 minutes insulin, of ?-TDT patients to intravenous glucose tolerance test (IVGTT), was tested. Moreover, the long-term natural history was followed prospectively using an annual OGTT, with the aim of detecting any abnormality of glucose metabolism. Results: The FPIR value  was between the 1st and 3rd percentile in two patients and between the 3rd and 10th percentile in  five. After 43 ± 26 months (range 11 - 80 months) of follow-up, 2 patients developed impaired glucose tolerance (IGT), 3 both IGT and impaired fasting glucose (IFG) and two overt diabetes mellitus (DM). Interestingly, the patients who developed DM had, at baseline the lowest value of insulinogenic index (IGI, 0.08 and 0.25), defined as the ratio of the increment of plasma insulin to plasma glucose during the first 30 minutes after OGTT. Moreover, a significant correlation was found between the IGI at baseline and at follow-up in the patients who developed IGT with or without IFG (R= 0.927; P: 0.023). A significant reduction of Matsuda insulin sensitivity index (ISIM) and Insulin Secretion-Sensitivity Index-2 (ISSI-2) was documented in the study cohort at diagnosis of IFG, IGT and DM. There was a significant inverse correlation between ISSI-2 and area under the curve of plasma glucose (AUC-PG). Conclusions: These data demonstrated, for the first time, a progressive deterioration in glucose homeostasis in ?-TDT subjects with NGT and hypoinsulinemia.  Thus, we consider that variations of insulin sensitivity could possibly have an impact on glucose tolerance in adult patients with TDT. Further investigations should focus on factors that might positively influence insulin sensitivity, including nutrition, drugs and physical activity.  


Sign in / Sign up

Export Citation Format

Share Document