Species differences in hepatic and intestinal metabolic activities for 43 human cytochrome P450 substrates between humans and rats or dogs

Xenobiotica ◽  
2013 ◽  
Vol 43 (11) ◽  
pp. 948-955 ◽  
Author(s):  
Haruka Nishimuta ◽  
Tetsuya Nakagawa ◽  
Naruaki Nomura ◽  
Masashi Yabuki
2011 ◽  
Vol 26 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Haruka Nishimuta ◽  
Kimihiko Sato ◽  
Yasuyuki Mizuki ◽  
Masashi Yabuki ◽  
Setsuko Komuro

2016 ◽  
Vol 19 (4) ◽  
pp. 423 ◽  
Author(s):  
Toshiro Niwa ◽  
Yurie Imagawa

PURPOSE: The metabolic activities of aminopyrine N-demethylation and tolbutamide methylhydroxylation by the human hepatic cytochrome P450 (P450 or CYP) 2C subfamily were compared and the effects of azole antifungal agent on the drug-metabolizing activity of CYP2C8 were investigated. METHODS: Aminopyrine N-demethylation and tolbutamide methylhydroxylation by CYP2C8, CYP2C9, and CYP2C19 were determined by the previous reported methods. The effects of five azole antifungal agents, fluconazole, itraconazole, ketoconazole, miconazole, and voriconazole, on the aminopyrine N-demethylation activity by CYP2C8 were investigated. RESULTS: With regard to aminopyrine N-demethylation, CYP2C19 had the lowest Michaelis constant (Km) and CYP2C8 had the highest maximal velocity (Vmax) among the CYP2C subfamily members. The Vmax/Km values for CYP2C8 were the highest, followed by CYP2C19. For tolbutamide methylhydroxylation, the Km and Vmax for CYP2C19 were three and six times higher than the corresponding values for CYP2C9, and the Vmax/Km value for CYP2C19 was twice that for CYP2C9, whereas hydroxylated tolbutamide formed by CYP2C8 was not detected. Fluconazole, itraconazole, and voriconazole at a concentration of 2 or 10 µM neither inhibited nor stimulated CYP2C8-mediated aminopyrine N-demethylation activity at substrate concentrations around the Km (5 mM). However, ketoconazole and miconazole noncompetitively inhibited CYP2C8-mediated aminopyrine N-demethylation with the inhibitory constant values of 1.98 and 0.86 µM, respectively. CONCLUSION: These results suggest that ketoconazole and miconazole might inhibit CYP2C8 clinically. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Xenobiotica ◽  
2009 ◽  
Vol 00 (00) ◽  
pp. 090901052457079-8
Author(s):  
Y. Nishiya ◽  
K. Hagihara ◽  
A. Kurihara ◽  
N. Okudaira ◽  
N.A. Farid ◽  
...  

1995 ◽  
Vol 270 (10) ◽  
pp. 5014-5018 ◽  
Author(s):  
Aditya P. Koley ◽  
Jeroen T. M. Buters ◽  
Richard C. Robinson ◽  
Allen Markowitz ◽  
Fred K. Friedman

Phytomedicine ◽  
2017 ◽  
Vol 31 ◽  
pp. 1-9 ◽  
Author(s):  
A.K.M. Mahmudul Haque ◽  
Kok Hoong Leong ◽  
Yoke Lin Lo ◽  
Khalijah Awang ◽  
Noor Hasima Nagoor

Sign in / Sign up

Export Citation Format

Share Document