The Role of Human-Specific Gene Duplications During Brain Development and Evolution

2013 ◽  
Vol 27 (3) ◽  
pp. 86-96 ◽  
Author(s):  
Takayuki Sassa
2019 ◽  
Vol 18 (6) ◽  
pp. 402-411 ◽  
Author(s):  
Cemalettin Bekpen ◽  
Diethard Tautz

Abstract Illuminating the role of specific gene duplications within the human lineage can provide insights into human-specific adaptations. The so-called human core duplicon gene families have received particular attention in this respect, due to special features, such as expansion along single chromosomes, newly acquired protein domains and signatures of positive selection. Here, we summarize the data available for 10 such families and include some new analyses. A picture emerges that suggests broad functions for these protein families, possibly through modification of core cellular pathways. Still, more dedicated studies are required to elucidate the function of core-duplicons gene families and how they have shaped adaptations and evolution of humans.


2012 ◽  
Vol 30 (8) ◽  
pp. 628-628
Author(s):  
Cécile Charrier ◽  
Kaumudi Joshi ◽  
Takayuki Sassa ◽  
Jaeda Coutinho‐Budd ◽  
Nelle Lambert ◽  
...  

2019 ◽  
Author(s):  
Jaume Pérez-Sánchez ◽  
Fernando Naya-Català ◽  
Beatriz Soriano ◽  
M. Carla Piazzon ◽  
Ahmed Hafez ◽  
...  

AbstractGilthead sea bream is an economically important fish species that is remarkably well-adapted to farming and changing environments. Understanding the genomic basis of this plasticity will serve to orientate domestication and selective breeding towards more robust and efficient fish. To address this goal, a draft genome assembly was reconstructed combining short- and long-read high-throughput sequencing with genetic linkage maps. The assembled unmasked genome spans 1.24 Gb of an expected 1.59 Gb genome size with 932 scaffolds (∼732 Mb) anchored to 24 chromosomes that are available as a karyotype browser at www.nutrigroup-iats.org/seabreambrowser. Homology-based functional annotation, supported by RNA-seq transcripts, identified 55,423 actively transcribed genes corresponding to 21,275 unique descriptions with more than 55% of duplicated genes. The mobilome accounts for the 75% of the full genome size and it is mostly constituted by introns (599 Mb), whereas the rest is represented by low complexity repeats, RNA retrotransposons, DNA transposons and non-coding RNAs. This mobilome also contains a large number of chimeric/composite genes (i. e. loci presenting fragments or exons mostly surrounded by LINEs and Tc1/mariner DNA transposons), whose analysis revealed an enrichment in immune-related functions and processes. Analysis of synteny and gene phylogenies uncovered a high rate of species-specific duplications, resulting from recent independent duplications rather than from genome polyploidization (2.024 duplications per gene; 0.385 excluding gene expansions). These species-specific duplications were enriched in gene families functionally related to genome transposition, immune response and sensory responses. Additionally, transcriptional analysis of liver, skeletal muscle, intestine, gills and spleen supported a high number of functionally specialized paralogs under tissue-exclusive regulation. Altogether, these findings suggest a role of recent large-scale gene duplications coupled to tissue expression diversification in the evolution of gilthead sea bream genome during its successful adaptation to a changing and pathogen-rich environment. This issue also underscores a role of evolutionary routes for rapid increase of the gene repertoire in teleost fish that are independent of polyploidization. Since gilthead sea bream has a well-recognized plasticity, the current study will advance our understanding of fish biology and how organisms of this taxon interact with the environment.


2017 ◽  
Author(s):  
Antonio Benítez-Burraco ◽  
Raúl Torres-Ruiz ◽  
Pere Gelabert Xirinachs ◽  
Carles Lalueza-Fox ◽  
Sandra Rodríguez-Perales ◽  
...  

AbstractTwo functional enhancers of FOXP2, a gene important for language development and evolution, exhibit several human-specific changes compared to extinct hominins that are located within the binding site for different transcription factors. Specifically, Neanderthals and Denisovans bear the ancestral allele in one position within the binding site for SMARCC1, involved in brain development and vitamin D metabolism. This change might have resulted in a different pattern of FOXP2 expression in our species compared to extinct hominins.


Author(s):  
Sarah Fernandes ◽  
Davis Klein ◽  
Maria C. Marchetto

Brain organoids are proving to be physiologically relevant models for studying human brain development in terms of temporal transcriptional signature recapitulation, dynamic cytoarchitectural development, and functional electrophysiological maturation. Several studies have employed brain organoid technologies to elucidate human-specific processes of brain development, gene expression, and cellular maturation by comparing human-derived brain organoids to those of non-human primates (NHPs). Brain organoids have been established from a variety of NHP pluripotent stem cell (PSC) lines and many protocols are now available for generating brain organoids capable of reproducibly representing specific brain region identities. Innumerous combinations of brain region specific organoids derived from different human and NHP PSCs, with CRISPR-Cas9 gene editing techniques and strategies to promote advanced stages of maturation, will successfully establish complex brain model systems for the accurate representation and elucidation of human brain development. Identified human-specific processes of brain development are likely vulnerable to dysregulation and could result in the identification of therapeutic targets or disease prevention strategies. Here, we discuss the potential of brain organoids to successfully model human-specific processes of brain development and explore current strategies for pinpointing these differences.


Genomics ◽  
2010 ◽  
Vol 95 (4) ◽  
pp. 203-209 ◽  
Author(s):  
Gemma Armengol ◽  
Sakari Knuutila ◽  
Juan-José Lozano ◽  
Irene Madrigal ◽  
María-Rosa Caballín

Sign in / Sign up

Export Citation Format

Share Document