Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy

2014 ◽  
Vol 31 (8) ◽  
pp. 738-745 ◽  
Author(s):  
J. Laudien ◽  
D. Naglav ◽  
C. Groβ-Heitfeld ◽  
K. B. Ferenz ◽  
H. de Groot ◽  
...  
2000 ◽  
Vol 385 (4) ◽  
pp. 290-298 ◽  
Author(s):  
M. Steinbauer ◽  
Anthony Gustav Harris ◽  
Christoph Abels ◽  
Konrad Messmer

2020 ◽  
Vol 6 (22) ◽  
pp. eaba4542 ◽  
Author(s):  
Chenyi Mao ◽  
Min Yen Lee ◽  
Jing-Ru Jhan ◽  
Aaron R. Halpern ◽  
Marcus A. Woodworth ◽  
...  

Fluorescence microscopy is a workhorse tool in biomedical imaging but often poses substantial challenges to practitioners in achieving bright or uniform labeling. In addition, while antibodies are effective specific labels, their reproducibility is often inconsistent, and they are difficult to use when staining thick specimens. We report the use of conventional, commercially available fluorescent dyes for rapid and intense covalent labeling of proteins and carbohydrates in super-resolution (expansion) microscopy and cleared tissue microscopy. This approach, which we refer to as Fluorescent Labeling of Abundant Reactive Entities (FLARE), produces simple and robust stains that are modern equivalents of classic small-molecule histology stains. It efficiently reveals a wealth of key landmarks in cells and tissues under different fixation or sample processing conditions and is compatible with immunolabeling of proteins and in situ hybridization labeling of nucleic acids.


2020 ◽  
Vol 21 (22) ◽  
pp. 8498
Author(s):  
Valentina Parodi ◽  
Emanuela Jacchetti ◽  
Arianna Bresci ◽  
Benedetta Talone ◽  
Carlo M. Valensise ◽  
...  

Three-dimensional culture systems and suitable substrates topographies demonstrated to drive stem cell fate in vitro by mechanical conditioning. For example, the Nichoid 3D scaffold remodels stem cells and shapes nuclei, thus promoting stem cell expansion and stemness maintenance. However, the mechanisms involved in force transmission and in biochemical signaling at the basis of fate determination are not yet clear. Among the available investigation systems, confocal fluorescence microscopy using fluorescent dyes enables the observation of cell function and shape at the subcellular scale in vital and fixed conditions. Contrarily, nonlinear optical microscopy techniques, which exploit multi-photon processes, allow to study cell behavior in vital and unlabeled conditions. We apply confocal fluorescence microscopy, coherent anti-Stokes Raman scattering (CARS), and second harmonic generation (SHG) microscopy to characterize the phenotypic expression of mesenchymal stem cells (MSCs) towards adipogenic and chondrogenic differentiation inside Nichoid scaffolds, in terms of nuclear morphology and specific phenotypic products, by comparing these techniques. We demonstrate that the Nichoid maintains a rounded nuclei during expansion and differentiation, promoting MSCs adipogenic differentiation while inhibiting chondrogenesis. We show that CARS and SHG techniques are suitable for specific estimation of the lipid and collagenous content, thus overcoming the limitations of using unspecific fluorescent probes.


1997 ◽  
Vol 8 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
J Nunnari ◽  
W F Marshall ◽  
A Straight ◽  
A Murray ◽  
J W Sedat ◽  
...  

To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.


2003 ◽  
Vol 40 (5) ◽  
pp. 460-466 ◽  
Author(s):  
M. Schmitt-Sody ◽  
J. Landes ◽  
S.P. Zysk ◽  
C. Pellengahr ◽  
F. Krombach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document