scholarly journals Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.

1997 ◽  
Vol 8 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
J Nunnari ◽  
W F Marshall ◽  
A Straight ◽  
A Murray ◽  
J W Sedat ◽  
...  

To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.

Author(s):  
Hafiz Ishfaq Ahmad ◽  
Muhammad Bilal Bin Majeed ◽  
Muhammad Ijaz ◽  
Muhammad Zulfiqar Ahmad ◽  
Babar Maqbool ◽  
...  

Mitochondria is a cellular source of energy, playing an essential role in cellular stress induced by environmental stimuli. The genetic diversity of mitochondrial genes involved in oxidative phosphorylation affects the production of cellular energy and regional adaptation to various ecological (climatic) pressures influencing amino acid sequences (variants of protein). However, a little is known about the combined effect of protein changes on cell-level metabolic alterations in simultaneous exposure to various environmental conditions, including mitochondrial dysfunction and oxidative stress induction. Present study was designed to address this issue by analyzing the mitochondrial proteins in Fasciola species including Cytochrome C oxidase (COX1, COX2, COX3 and CYTB) and NADH dehydrogenase (ND1, ND2, ND3, ND4, ND5 and ND6). Mitochondrial proteins were used for a detailed computational investigation using available standard bioinformatics tools to explore structural and functional relationships. Our analysis shows that the mitochondrial protein family of Fasciola species are extensively diversified in all species studied, showing an extending role in various biological processes The results showed that the protein of COX1 of F. hepatica, F. gigantica and F. jacksoni consist of 510, 513 and 517 amino acids respectively. The alignment of proteins showed that these proteins are conserved in the same regions at ten positions in COX and CYTB proteins while at twelve locations in NADH. Three dimensional structure of COX, CYTB and NADH proteins were compared and the differences in additional conserved and binding sites in COX and CYTB proteins as compared to NADH were found in three Fasciola species. These results, based on the amino acid diversity pattern, were used to identify sites in the enzyme and the variations in mitochondrial proteins among Fasciola species. This study provides valuable information for future experimental studies including identification of therapeutics, diagnostics and immunoprophylactic interests with novel mitochondrial proteins.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luzhe Huang ◽  
Hanlong Chen ◽  
Yilin Luo ◽  
Yair Rivenson ◽  
Aydogan Ozcan

AbstractVolumetric imaging of samples using fluorescence microscopy plays an important role in various fields including physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples, Recurrent-MZ is demonstrated to significantly increase the depth-of-field of a 63×/1.4NA objective lens, also providing a 30-fold reduction in the number of axial scans required to image the same sample volume. We further illustrated the generalization of this recurrent network for 3D imaging by showing its resilience to varying imaging conditions, including e.g., different sequences of input images, covering various axial permutations and unknown axial positioning errors. We also demonstrated wide-field to confocal cross-modality image transformations using Recurrent-MZ framework and performed 3D image reconstruction of a sample using a few wide-field 2D fluorescence images as input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


2021 ◽  
Vol 11 (6) ◽  
pp. 2773
Author(s):  
Hiroaki Yokota ◽  
Atsuhito Fukasawa ◽  
Minako Hirano ◽  
Toru Ide

Over the years, fluorescence microscopy has evolved and has become a necessary element of life science studies. Microscopy has elucidated biological processes in live cells and organisms, and also enabled tracking of biomolecules in real time. Development of highly sensitive photodetectors and light sources, in addition to the evolution of various illumination methods and fluorophores, has helped microscopy acquire single-molecule fluorescence sensitivity, enabling single-molecule fluorescence imaging and detection. Low-light photodetectors used in microscopy are classified into two categories: point photodetectors and wide-field photodetectors. Although point photodetectors, notably photomultiplier tubes (PMTs), have been commonly used in laser scanning microscopy (LSM) with a confocal illumination setup, wide-field photodetectors, such as electron-multiplying charge-coupled devices (EMCCDs) and scientific complementary metal-oxide-semiconductor (sCMOS) cameras have been used in fluorescence imaging. This review focuses on the former low-light point photodetectors and presents their fluorescence microscopy applications and recent progress. These photodetectors include conventional PMTs, single photon avalanche diodes (SPADs), hybrid photodetectors (HPDs), in addition to newly emerging photodetectors, such as silicon photomultipliers (SiPMs) (also known as multi-pixel photon counters (MPPCs)) and superconducting nanowire single photon detectors (SSPDs). In particular, this review shows distinctive features of HPD and application of HPD to wide-field single-molecule fluorescence detection.


1982 ◽  
Vol 2 (1) ◽  
pp. 30-41
Author(s):  
N A Oliver ◽  
D C Wallace

Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.


Author(s):  
Jessica N. Peoples ◽  
Nasab Ghazal ◽  
Duc M. Duong ◽  
Katherine R. Hardin ◽  
Janet R. Manning ◽  
...  

Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


ACS Sensors ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 2644-2650 ◽  
Author(s):  
Xiaojun Liu ◽  
Conghui Huang ◽  
Chenghua Zong ◽  
Aiye Liang ◽  
Zhangjian Wu ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2282
Author(s):  
Björn Koos ◽  
Eva Lotta Moderegger ◽  
Katharina Rump ◽  
Hartmuth Nowak ◽  
Katrin Willemsen ◽  
...  

Mitochondrial DNA (mtDNA) plays a vital role as a damage-associated molecular pattern in sepsis being able to shape the immune response. Since pathogen recognition receptors of innate immune cells are activated by demethylated DNA only, we set out to investigate the amount of DNA methyltransferase 1 (DNMT1) in mitochondria and the extent of mtDNA methylation in a human endotoxin model. Peripheral blood mononuclear cells of 20 healthy individuals were isolated from whole blood and stimulated with lipopolysaccharide (LPS) for 48 h. Subsequently, DNMT1 protein abundance was assessed in whole cells and a mitochondrial fraction. At the same time, methylation levels of mtDNA were quantified, and cytokine expression in the supernatant was measured. Despite increased cellular expression of DNMT1 after LPS stimulation, the degree of mtDNA methylation slightly decreased. Strikingly the mitochondrial protein abundance of DNMT1 was reduced by 50% in line with the lower degree of mtDNA methylation. Although only modest alterations were seen in the degree of mtDNA methylation, these strongly correlated with IL-6 and IL-10 expression. Our data may hint at a protein import problem for DNMT1 into the mitochondria under LPS stimulation and suggest a role of demethylated mtDNA in the regulation of the inflammatory immune response.


Sign in / Sign up

Export Citation Format

Share Document