Breast Cancer Tissue Preparation for Routinary Steroid Receptors and Epidermal Growth Factor Receptor Determination

1996 ◽  
Vol 35 (4) ◽  
pp. 493-494
Author(s):  
Orlando Diez-Gibert ◽  
Miguel A. Navarro ◽  
Victor Nacher ◽  
Maria E. Fernandez-Montoli
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yue Zeng ◽  
Chih-Hsin Tang ◽  
Yan Wang ◽  
Hua-Jun Lu ◽  
Bi-Fei Huang ◽  
...  

Elevated levels of resistin and epidermal growth factor receptor (EGFR) facilitate the development of breast cancer, although there are no reports of any correlation between these proteins. This study analyzed 392 human breast cancer tissue specimens and 42 samples of adjacent normal tissue. Rates of positive and strongly positive resistin expression were significantly higher in breast cancer tissue than in the adjacent nontumor tissue (83.2% vs. 23.8% and 20.9% vs. 0.0%, respectively; P < 0.001 for both comparisons). Positive resistin expression was significantly associated with tumor size, grade, stage, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and molecular classification; strongly positive resistin expression was associated with tumor grade, ER, PR, HER2 status, and molecular classification. Significantly positive correlations were observed between positive and strongly positive resistin expression and corresponding levels of EGFR expression. Relapse-free and overall survival was worse for patients with high levels of both proteins than for those with high levels of only one protein or normal levels of both proteins. Our evidence suggests that combined high levels of resistin and EGFR expression correlate with survival in patients with breast cancer.


Author(s):  
Swathi R. Shetty ◽  
Ragini Yeeravalli ◽  
Tanya Bera ◽  
Amitava Das

: Epidermal growth factor receptor (EGFR), a type-I transmembrane protein with intrinsic tyrosine kinase activity is activated by peptide growth factors such as EGF, epigen, amphiregulin, etc. EGFR plays a vital role in regulating cell growth, migration, and differentiation in various tissue-specific cancers. It has been reported to be overexpressed in lung, head, and neck, colon, brain, pancreatic, and breast cancer that trigger tumor progression and drug resistance. EGFR overexpression alters the signaling pathway and induces cell division, invasion, and cell survival. Our prior studies demonstrated that EGFR inhibition modulates chemosensitivity in breast cancer stem cells thereby serving as a potential drug target for breast cancer mitigation. Tyrosine kinase inhibitors (Lapatinib, Neratinib) and monoclonal antibodies (Trastuzumab) targeting EGFR have been developed and approved by the US FDA for clinical use against breast cancer. This review highlights the critical role of EGFR in breast cancer progression and enumerates the various approaches being undertaken to inhibit aggressive breast cancers by suppressing the downstream pathways. Further, the mechanisms of action of potential molecules at various stages of drug development as well as clinically approved drugs for breast cancer treatment are illustrated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ilana Schlam ◽  
Sandra M. Swain

AbstractHuman epidermal growth factor receptor 2 (HER2) positive breast cancer accounts for 20–25% of all breast cancers. Multiple HER2-targeted therapies have been developed over the last few years, including the tyrosine kinase inhibitors (TKI) lapatinib, neratinib, tucatinib, and pyrotinib. These drugs target HER2 and other receptors of the epidermal growth factor receptor family, therefore each has unique efficacy and adverse event profile. HER2-directed TKIs have been studied in the early stage and advanced settings and have shown promising responses. There is increasing interest in utilizing these drugs in combination with chemotherapy and /or other HER2-directed agents in patients with central nervous system involvement, TKIs have shown to be effective in this setting for which treatment options have been previously limited and the prognosis remains poor. The aim of this review is to summarize currently approved TKIs for HER2+ breast, key clinical trials, and their use in current clinical practice.


Sign in / Sign up

Export Citation Format

Share Document