scholarly journals Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays

2011 ◽  
pp. 2265 ◽  
Author(s):  
Yan Li ◽  
Xue-Qin Yang ◽  
Chuang Chen ◽  
Chun-Wei Peng ◽  
Jin-Xuan Hou ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yue Zeng ◽  
Chih-Hsin Tang ◽  
Yan Wang ◽  
Hua-Jun Lu ◽  
Bi-Fei Huang ◽  
...  

Elevated levels of resistin and epidermal growth factor receptor (EGFR) facilitate the development of breast cancer, although there are no reports of any correlation between these proteins. This study analyzed 392 human breast cancer tissue specimens and 42 samples of adjacent normal tissue. Rates of positive and strongly positive resistin expression were significantly higher in breast cancer tissue than in the adjacent nontumor tissue (83.2% vs. 23.8% and 20.9% vs. 0.0%, respectively; P < 0.001 for both comparisons). Positive resistin expression was significantly associated with tumor size, grade, stage, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status, and molecular classification; strongly positive resistin expression was associated with tumor grade, ER, PR, HER2 status, and molecular classification. Significantly positive correlations were observed between positive and strongly positive resistin expression and corresponding levels of EGFR expression. Relapse-free and overall survival was worse for patients with high levels of both proteins than for those with high levels of only one protein or normal levels of both proteins. Our evidence suggests that combined high levels of resistin and EGFR expression correlate with survival in patients with breast cancer.


Author(s):  
Swathi R. Shetty ◽  
Ragini Yeeravalli ◽  
Tanya Bera ◽  
Amitava Das

: Epidermal growth factor receptor (EGFR), a type-I transmembrane protein with intrinsic tyrosine kinase activity is activated by peptide growth factors such as EGF, epigen, amphiregulin, etc. EGFR plays a vital role in regulating cell growth, migration, and differentiation in various tissue-specific cancers. It has been reported to be overexpressed in lung, head, and neck, colon, brain, pancreatic, and breast cancer that trigger tumor progression and drug resistance. EGFR overexpression alters the signaling pathway and induces cell division, invasion, and cell survival. Our prior studies demonstrated that EGFR inhibition modulates chemosensitivity in breast cancer stem cells thereby serving as a potential drug target for breast cancer mitigation. Tyrosine kinase inhibitors (Lapatinib, Neratinib) and monoclonal antibodies (Trastuzumab) targeting EGFR have been developed and approved by the US FDA for clinical use against breast cancer. This review highlights the critical role of EGFR in breast cancer progression and enumerates the various approaches being undertaken to inhibit aggressive breast cancers by suppressing the downstream pathways. Further, the mechanisms of action of potential molecules at various stages of drug development as well as clinically approved drugs for breast cancer treatment are illustrated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ilana Schlam ◽  
Sandra M. Swain

AbstractHuman epidermal growth factor receptor 2 (HER2) positive breast cancer accounts for 20–25% of all breast cancers. Multiple HER2-targeted therapies have been developed over the last few years, including the tyrosine kinase inhibitors (TKI) lapatinib, neratinib, tucatinib, and pyrotinib. These drugs target HER2 and other receptors of the epidermal growth factor receptor family, therefore each has unique efficacy and adverse event profile. HER2-directed TKIs have been studied in the early stage and advanced settings and have shown promising responses. There is increasing interest in utilizing these drugs in combination with chemotherapy and /or other HER2-directed agents in patients with central nervous system involvement, TKIs have shown to be effective in this setting for which treatment options have been previously limited and the prognosis remains poor. The aim of this review is to summarize currently approved TKIs for HER2+ breast, key clinical trials, and their use in current clinical practice.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Kenichi Inoue ◽  
Norikazu Masuda ◽  
Hiroji Iwata ◽  
Masato Takahashi ◽  
Yoshinori Ito ◽  
...  

Abstract Background This was a Japanese subpopulation analysis of MONARCH 2, a double-blind, randomized, placebo-controlled, phase 3 study of abemaciclib plus fulvestrant in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer (ABC). Methods Eligible women had progressed on (neo)adjuvant endocrine therapy (ET), ≤ 12 months from end of adjuvant ET, or on first-line ET for ABC, and had not received chemotherapy for ABC. Patients were randomized 2:1 to receive abemaciclib or placebo plus fulvestrant. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), pharmacokinetics (PK), health-related quality of life (HRQoL), and safety. Results In Japan, 95 patients were randomized (abemaciclib, n = 64; placebo, n = 31). At final PFS analysis (February 14, 2017), median PFS was 21.2 and 14.3 months, respectively, in the abemaciclib and placebo groups (hazard ratio: 0.672; 95% confidence interval: 0.380–1.189). Abemaciclib had a higher objective response rate (37.5%) than placebo (12.9%). PK and safety profiles for Japanese patients were consistent with those of the overall population, without clinically meaningful differences across most HRQoL dimensions evaluated. The most frequent adverse events in the abemaciclib versus placebo groups were diarrhea (95.2 versus 25.8%), neutropenia (79.4 versus 0%), and leukopenia (66.7 versus 0%). At a second data cutoff (June 20, 2019), median OS was not reached with abemaciclib and 47.3 months with placebo (hazard ratio: 0.755; 95% confidence interval: 0.390–1.463). Conclusions Results of the Japanese subpopulation were consistent with the improved clinical outcomes and manageable safety profile observed in the overall population. Clinical trial registration NCT02107703; U.S. National Library of Medicine: https://clinicaltrials.gov/ct2/show/NCT02107703.


Sign in / Sign up

Export Citation Format

Share Document