The real time video vector display of ground reaction forces during ambulation

1979 ◽  
Vol 3 (5) ◽  
pp. 252-255 ◽  
Author(s):  
J. H. Tait ◽  
G. K. Rose
Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 88
Author(s):  
Elliot Recinos ◽  
John Abella ◽  
Shayan Riyaz ◽  
Emel Demircan

Recent advances in computational technology have enabled the use of model-based simulation with real-time motion tracking to estimate ground reaction forces during gait. We show here that a biomechanical-based model including a foot-ground contact can reproduce measured ground reaction forces using inertial measurement unit data during single-leg support, single-support jump, side to side jump, jogging, and skipping. The framework is based on our previous work on integrating the OpenSim musculoskeletal models with the Unity environment. The validation was performed on a single subject performing several tasks that involve the lower extremity. The novelty of this paper includes the integration and real-time tracking of inertial measurement unit data in the current framework, as well as the estimation of contact forces using biologically based musculoskeletal models. The RMS errors of tracking the vertical ground reaction forces are 0.027 bodyweight, 0.174 bodyweight, 0.173 bodyweight, 0.095 bodyweight, and 0.10 bodyweight for single-leg support, single-support jump, side to side jump, jogging, and skipping, respectively. The average RMS error for all tasks and trials is 0.112 bodyweight. This paper provides a computational framework for further applications in whole-body human motion analysis.


Author(s):  
Sung-Soo Kim ◽  
Wan Hee Jeong ◽  
Seonghoon Kim

HILS (Hardware-in-the Loop Simulation) vehicle simulator is one of the most effective tools to develop control subsystems for the intelligent vehicles, since expensive vehicle field tests can be replaced with virtual tests in the HILS simulator. In the HILS simulator, the software vehicle dynamics model must be solved in real-time, and it must also reproduce the real vehicle motions. Compliance effects from suspension bush elements significantly influences the vehicle behavior. In order to include such compliance effects to the vehicle model, normally the spring-damper model of the bush elements is used. However, high stiffness of the bush elements hinders real-time simulations. Thus, it is necessary to have an efficient method to include compliance effects for the real-time multibody vehicle dynamics model. In this paper, compliance model for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations and full car bump run simulations are carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Sign in / Sign up

Export Citation Format

Share Document