Single-Step Granulation: Development of a Vacuum-Based IR Drying Method (Pilot Scale Results)

1997 ◽  
Vol 23 (2) ◽  
pp. 119-126 ◽  
Author(s):  
G. Duschler ◽  
W. Carius ◽  
K. H. Bauer

Meeting the demand for food, energy, and water to sustain the worldwide growth of urban population is a major challenge. Several recent reports have concluded that one approach to overcome this challenge is to recover and recycle resources within the food-energywater (FEW) nexus in urban settings. Urban wastewaters (UWW) are now being recognized as a resource, rich in nutrients and energy, rather than a waste stream that has to be treated and disposed of at the expense of significant energy input and associated environmental emissions. Reclaiming reusable water, nutrients, and energy from UWWs can contribute to autarky of FEW nexus and render the wastewater management process sustainable and potentially profitable. This paper presents a novel approach to treat UWW with the potential for high recovery of energy, nutrients, and water from UWW for use in food crop production. This approach entails cultivation of energy-rich algal biomass in primary-settled UWW followed by extraction of biocrude and nutrients from the algal biomass by hydrothermal liquefaction. A fraction of the recovered nutrients is recycled to boost biomass production while the rest can be stockpiled for use as fertilizer. Results from a pilot scale field study conducted at a local wastewater treatment plant confirmed that the algal system can achieve >80% removal of organic carbon, ammoniacal-nitrogen, and phosphates in UWW, meeting the respective discharge standards in a single step, with a batch process time of three days.


1995 ◽  
Vol 21 (14) ◽  
pp. 1599-1610 ◽  
Author(s):  
G. Duschler ◽  
W. Carius ◽  
K. H. Bauer
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 229
Author(s):  
Vincent Folliard ◽  
Jacopo de Tommaso ◽  
Jean-Luc Dubois

Oxidative coupling of alcohols using methanol and ethanol, which can both be made renewable, is an attractive route to produce acrolein (propenaldehyde) in a single-step process. Currently acrolein is produced by direct oxidation of fossil propylene, and catalytic double dehydration of glycerol has been also investigated up to pilot scale. Although glycerol is an attractive feedstock, it suffers of several drawbacks. Addressing the limitations of both routes, the oxidative coupling of alcohols combines an exothermic oxidation and cross-aldolization. The best performing catalysts so far combine redox and acid/base sites. Reviewing the academic and patent literature, the present paper also addresses the economic analysis, to highlight the potential of this reaction at a yield from 70%, and at two different plant scales. The analysis has been made to guide further research, with the remaining technical problems to solve. Improved selectivity contributing to reduce the amount of equipment and the investment cost should be the prime target.


2005 ◽  
Vol 173 (4S) ◽  
pp. 240-240
Author(s):  
Premal J. Desai ◽  
David A. Hadley ◽  
Lincoln J. Maynes ◽  
D. Duane Baldwin

1996 ◽  
Vol 75 (03) ◽  
pp. 497-502 ◽  
Author(s):  
Hadewijch L M Pekelharing ◽  
Henne A Kleinveld ◽  
Pieter F C.C.M Duif ◽  
Bonno N Bouma ◽  
Herman J M van Rijn

SummaryLp(a) is an LDL-like lipoprotein plus an additional apolipoprotein apo(a). Based on the structural homology of apo(a) with plasminogen, it is hypothesized that Lp(a) interferes with fibrinolysis. Extracellular matrix (ECM) produced by human umbilical vein endothelial cells was used to study the effect of Lp(a) and LDL on plasminogen binding and activation. Both lipoproteins were isolated from the same plasma in a single step. Plasminogen bound to ECM via its lysine binding sites. Lp(a) as well as LDL were capable of competing with plasminogen binding. The degree of inhibition was dependent on the lipoprotein donor as well as the ECM donor. When Lp(a) and LDL obtained from one donor were compared, Lp(a) was always a much more potent competitor. The effect of both lipoproteins on plasminogen binding was reflected in their effect on plasminogen activation. It is speculated that Lp(a) interacts with ECM via its LDL-like lipoprotein moiety as well as via its apo(a) moiety.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


Sign in / Sign up

Export Citation Format

Share Document