In Vitro Release Study of Transdermal Delivery Systems of Progesterone

1998 ◽  
Vol 24 (2) ◽  
pp. 187-191 ◽  
Author(s):  
C. Valenta ◽  
R. Biebel
2010 ◽  
Vol 13 (2) ◽  
pp. 286 ◽  
Author(s):  
Tailane Sant´Anna Moreira ◽  
Valéria Pereira De Sousa ◽  
Maria Bernadete Riemma Pierre

Abstract PURPOSE: Transdermal delivery of anti-inflammatory lumiracoxib (LM) could be an interesting strategy to avoid the side effects associated with systemic delivery, but it is ineffective due to the drug poor skin penetration. We have investigated the effects of oleic acid (OA), a lipid penetration enhancer, on the in vitro release of LM from poloxamer-based delivery systems (PBDS). The rheological behavior (shear rate dependent viscosity) and gelation temperature through measurements of optimal sol-gel transition temperatures (Tsol-gel) were also carried out in these systems. METHODS: In vitro release studies of LM from PBDS were performed using cellulose acetate as artificial membrane mounted in a diffusion system. The amount of LM released was divided by exposition area (µg/cm2) and these values were plotted as function of the time (h). The flux of the drug across the membrane (J) was calculated from the slope of the linear portion of the plot and expressed as µg/cm2. h -1. The determination of viscosity was carried out at different shear rates (γ) between 0.1- 1000 S-1 using a parallel plate rheometer. Oscillatory measurements using a cone-plate geometry rheometer surrounded by a double jacket with temperature varying 4-40°C, was used in order to determine Tsol-gel. RESULTS: Increase of both polymer and OA concentrations increases the viscosity of the gels and consequently reduces the in vitro LM release from the PBDS, mainly for gels containing OA at 10.0% compared to other concentrations of the penetration enhancer. Tsol-gel transition temperature was decreased by increasing viscosity; in some cases the formulation was already a gel at room temperature. Rheological studies showed a pseudoplastic behavior, which facilitates the flow and improves the spreading characteristics of the formulations. CONCLUSIONS: Taken together, the results showed that poloxamer gels are good potential delivery systems for LM, leading to a sustained release, and also have appropriate rheological characteristics. Novelty of the work: A transdermal delivery of non-steroidal antinflammatory drugs like lumiracoxib (LM) can be an interesting alternative to the oral route of this drug, since it was recently withdraw of the market due to the liver damage when systemically administered in tablets as dosage form. There are no transdermal formulations of LM and it could be an alternative to treat inflammation caused by arthritis or arthrosis. Then, an adequate delivery system to LM is necessary in order to release the drug properly from the PBDS as well as have good characteristics related to semi-solid preparations for transdermal application, which were evaluated through in vitro release studies and rheological behavior in this paper, respectively.


2020 ◽  
Vol 109 (10) ◽  
pp. 3095-3104
Author(s):  
Qian Zhang ◽  
Michael Murawsky ◽  
Terri D. LaCount ◽  
Jinsong Hao ◽  
Priyanka Ghosh ◽  
...  

Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2013 ◽  
Vol 7 (5) ◽  
pp. 414-420 ◽  
Author(s):  
Amolkumar B. Lokhande ◽  
Satyendra Mishra ◽  
Ravindra D. Kulkarni ◽  
Jitendra B. Naik

2001 ◽  
Vol 27 (10) ◽  
pp. 1107-1114 ◽  
Author(s):  
Mahaveer D. Kurkuri ◽  
Anandrao R. Kulkarni ◽  
Mahadevappa Y. Kariduraganavar ◽  
Tejraj M. Aminabhavi

2015 ◽  
Vol 485 (1-2) ◽  
pp. 202-214 ◽  
Author(s):  
Maja Lusina Kregar ◽  
Marjana Dürrigl ◽  
Andrea Rožman ◽  
Želimir Jelčić ◽  
Biserka Cetina-Čižmek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document