scholarly journals Ku-dependent non-homologous end-joining as the major pathway contributes to sublethal damage repair in mammalian cells

2015 ◽  
Vol 91 (11) ◽  
pp. 867-871 ◽  
Author(s):  
Min Liu ◽  
Solah Lee ◽  
Bailong Liu ◽  
Hongyan Wang ◽  
Lihua Dong ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joonas A. Jamsen ◽  
Akira Sassa ◽  
Lalith Perera ◽  
David D. Shock ◽  
William A. Beard ◽  
...  

AbstractReactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol μ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol μ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol μ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.


2020 ◽  
Vol 102 (4) ◽  
pp. 817-827
Author(s):  
Kai Deng ◽  
Wanyou Feng ◽  
Xiaohua Liu ◽  
Xiaoping Su ◽  
Erwei Zuo ◽  
...  

Abstract Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.


2015 ◽  
Vol 11 (5) ◽  
pp. e1004246 ◽  
Author(s):  
David W. P. Dolan ◽  
Anze Zupanic ◽  
Glyn Nelson ◽  
Philip Hall ◽  
Satomi Miwa ◽  
...  

2008 ◽  
Vol 36 (15) ◽  
pp. 4872-4882 ◽  
Author(s):  
S. Malyarchuk ◽  
R. Castore ◽  
L. Harrison

2010 ◽  
Vol 285 (30) ◽  
pp. 23198-23207 ◽  
Author(s):  
Jia Liu ◽  
Alokes Majumdar ◽  
Jilan Liu ◽  
Lawrence H. Thompson ◽  
Michael M. Seidman

2012 ◽  
Vol 40 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Johanne M. Murray ◽  
Tom Stiff ◽  
Penny A. Jeggo

DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.


2018 ◽  
Vol 49 (6) ◽  
pp. 2111-2123 ◽  
Author(s):  
Wenlei Yu ◽  
Liang Li ◽  
Guangming Wang ◽  
Wenjun Zhang ◽  
Jun Xu ◽  
...  

Background/Aims: Adult T-cell leukemia-lymphoma (ATL) is an aggressive disease which is highly resistant to chemotherapy. Studies show that enhanced ability of DNA damage repair (DDR) in cancer cells plays a key role in chemotherapy resistance. Here, we suggest that defect in DDR related genes might be a promising target to destroy the genome stability of tumor cells. Methods: Since KU70 is highly expressed in Jurkat cells, one of the most representative cell lines of ATL, we knocked down KU70 by shRNA and analyzed the impact of KU70 deficiency in Jurkat cells as well as in NOD-SCID animal models by western blot, immunofluorescence, flow cytometry and measuring DNA repair efficiency. Results: It is observed that silencing of KU70 resulted in accumulated DNA damage and impaired DDR in Jurkat cells, resulting in more apoptosis, decreased cell proliferation and cell cycle arrest. DNA damage leads to DNA double-strand breaks (DSBs), which are processed by either non-homologous end joining(NHEJ) or homologous recombination(HR). In our study, both NHEJ and HR are impaired because of KU70 defect, accompanied with increased protein level of SHP-1, a dephosphorylation enzyme. In turn, SHP-1 led to dephosphorylation of SIRT1, which further impaired HR repair efficiency. Moreover, KU70 deficiency prolonged survival of Jurkat-xenografted mice. Conclusion: These findings suggest that targeting KU70 is a promising target for ATL and might overcome the existing difficulties in chemotherapy.


2002 ◽  
Vol 22 (17) ◽  
pp. 6306-6317 ◽  
Author(s):  
Nuray Akyüz ◽  
Gisa S. Boehden ◽  
Silke Süsse ◽  
Andreas Rimek ◽  
Ute Preuss ◽  
...  

ABSTRACT DNA double-strand breaks (DSBs) arise spontaneously after the conversion of DNA adducts or single-strand breaks by DNA repair or replication and can be introduced experimentally by expression of specific endonucleases. Correct repair of DSBs is central to the maintenance of genomic integrity in mammalian cells, since errors give rise to translocations, deletions, duplications, and expansions, which accelerate the multistep process of tumor progression. For p53 direct regulatory roles in homologous recombination (HR) and in non-homologous end joining (NHEJ) were postulated. To systematically analyze the involvement of p53 in DSB repair, we generated a fluorescence-based assay system with a series of episomal and chromosomally integrated substrates for I-SceI meganuclease-triggered repair. Our data indicate that human wild-type p53, produced either stably or transiently in a p53-negative background, inhibits HR between substrates for conservative HR (cHR) and for gene deletions. NHEJ via microhomologies flanking the I-SceI cleavage site was also downregulated after p53 expression. Interestingly, the p53-dependent downregulation of homology-directed repair was maximal during cHR between sequences with short homologies. Inhibition was minimal during recombination between substrates that support reporter gene reconstitution by HR and NHEJ. p53 with a hotspot mutation at codon 281, 273, 248, 175, or 143 was severely defective in regulating DSB repair (frequencies elevated up to 26-fold). For the transcriptional transactivation-inactive variant p53(138V) a defect became apparent with short homologies only. These results suggest that p53 plays a role in restraining DNA exchange between imperfectly homologous sequences and thereby in suppressing tumorigenic genome rearrangements.


Sign in / Sign up

Export Citation Format

Share Document