High-throughput identification of purification conditions leads to preliminary crystallization conditions for three inner membrane proteins

2011 ◽  
Vol 28 (7-8) ◽  
pp. 445-453 ◽  
Author(s):  
Mads Gabrielsen ◽  
Frank Kroner ◽  
Isobel Black ◽  
Neil W. Isaacs ◽  
Andrew J. Roe ◽  
...  
2008 ◽  
Vol 25 (8) ◽  
pp. 599-608 ◽  
Author(s):  
Karen McLuskey ◽  
Mads Gabrielsen ◽  
Frank Kroner ◽  
Isobel Black ◽  
Richard J. Cogdell ◽  
...  

1999 ◽  
Vol 19 (5) ◽  
pp. 3435-3442 ◽  
Author(s):  
Gregor Steglich ◽  
Walter Neupert ◽  
Thomas Langer

ABSTRACT Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion ofPHB1 or PHB2 impairs growth of Δyta10 or Δyta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with them-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641876404
Author(s):  
Non Miyata ◽  
Osamu Kuge

Maintenance of the cardiolipin (CL) level largely depends on Ups1-Mdm35 complex-mediated intramitochondrial phosphatidic acid transfer. In addition, the presence of an alternative CL accumulation pathway has been suggested in the yeast Saccharomyces cerevisiae. This pathway is independent of the Ups1-Mdm35 complex and stimulated by loss of Ups2, which forms a complex with Mdm35 and mediates intramitochondrial transfer of phosphatidylserine for phosphatidylethanolamine synthesis. Recently, we found that the alternative CL accumulation pathway is enhanced by a lowered phosphatidylethanolamine level, not by loss of Ups2 per se, and depends on three mitochondrial inner membrane proteins, Fmp30, Mdm31, and Mdm32.


2006 ◽  
Vol 31 (5) ◽  
pp. 259-267 ◽  
Author(s):  
Carine de Marcos-Lousa ◽  
Dionisia P Sideris ◽  
Kostas Tokatlidis

Sign in / Sign up

Export Citation Format

Share Document