CD30 in pediatric post-transplant lymphoproliferative disease after solid organ transplant: characterization of a new therapeutic target

2014 ◽  
Vol 56 (3) ◽  
pp. 832-833 ◽  
Author(s):  
Tilmann Schober ◽  
Theodor Framke ◽  
Anika Großhennig ◽  
Christoph Klein ◽  
Hans Kreipe ◽  
...  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 888-888
Author(s):  
Anna Santarsieri ◽  
Andrew Butler ◽  
William Gelson ◽  
Stephen Pettit ◽  
John F Rudge ◽  
...  

Abstract Background: Post-transplant lymphoproliferative disease (PTLD) confers a high morbidity and mortality in a vulnerable population. We present the epidemiology and outcomes of PTLD in a large UK cohort of solid organ transplant (SOT) recipients who were transplanted over a 20-year period. Methods: This is a retrospective study of 5365 SOT recipients who had their first transplant between 2000 and 2021 at two UK transplant centres (Addenbrooke's Hospital and Papworth Hospital). We reviewed the records of all patients and found 142 who subsequently developed PTLD. For each type of transplant, we calculated the incidence rate of PTLD and cumulative incidence using a competing risk of death model. Survival was compared with the age-adjusted life expectancy of the UK population using the National life tables and a landmark analysis was performed to compare overall survival (OS) of PTLD patients from the date of diagnosis with the background survival of the transplant population. To compare treatment outcomes, a subset of 90 cases of monomorphic PTLD, DLBCL subtype were identified. 66 were treated with first-line Rituximab monotherapy and 24 received first-line R-Chemotherapy. Demographics, treatment response, and survival data were analysed with univariate and multivariate analysis to identify covariates associated with death in the first year post diagnosis of PTLD. Results: With a median follow-up time of 5.3 years, 142 of 5365 solid organ transplant recipients have developed PTLD (56/1965 kidney, 22/1428 liver, 12/327 simultaneous kidney-pancreas (SPK), 21/113 multivisceral (MVT), 10/778 heart, 15/503 bilateral lung, 3/148 single lung and 3/85 heart and lung). The incidence rate of PTLD was highest in the first year post-transplant in lung and MVT recipients. Cumulative incidence (shown in Figure 1) was 18% at 5 years post-MVT and 1-3% at 5 years following the other SOT types. Cumulative incidence was lowest for liver and heart transplants and was 10% at 20 years post-kidney transplantation. Median OS following SOT was 16 years which is significantly reduced compared with the age-adjusted UK population. There is a relatively high early mortality rate following diagnosis of PTLD and only patients surviving two years post diagnosis regained a similar longer-term survival to the non-PTLD SOT cohort. Treatment with rituximab monotherapy (RM) is now a standard of care for monomorphic PTLD 1. Outcomes for monomorphic patients were compared between those treated with RM (n=66, median follow-up 2.2 y) and R-Chemotherapy (n=24, median follow-up 5.2 y). The two groups were well matched for age and IPI. Of the 66 RM patients, 22 (33%) achieved complete remission with RM and required no further treatment. A further 18 (27%) patients achieved remission following further treatment with chemotherapy/surgery/CTL. 6/66 (9%) patients died of progressive disease (PD), 9/66 (14%) died pre-remission of non-PTLD causes and 11/66 (17%) died in remission of unrelated causes. In the R-Chemotherapy group, 22 patients received R-CHOP and 2 received R-CVP (n=24). 8 (33%) patients are alive and in remission after first line treatment and a further 3 patients (13%) after second line treatment. 2/24 (8%) patients died of PD, 4/24 (17%) died pre-remission of non-PTLD causes and 7/24 (30%) died post-remission of unrelated causes. There is no significant difference in OS between the two groups. Only a minority of deaths were due to PD and death from non-lymphoma causes pre and post remission remain considerably higher than non-PTLD SOT patients up to 2 years post treatment (Figure 1). Multivariate analysis of all 90 monomorphic PTLD patients identified IPI3+ as the strongest pre-treatment variable associating with inferior 1 year OS. Interestingly IPI3+ did not retain this significance when R-chemo patients were analysed alone. Conclusion: With this large SOT dataset we have mapped the cumulative incidence of PTLD over a 20 year period and highlight transplanted organ-specific differences in PTLD incidence over time. Treating monomorphic DLBL patients first-line with RM rather than R-chemotherapy does not appear to compromise OS, but the number of patients dying from non-lymphoma causes pre- and post-treatment remains high with both treatment approaches, with poor OS compared with age-matched non-PTLD SOT recipients. 1Trappe et al. Lancet Oncol; 2012 13(2):196-206 Figure 1 Figure 1. Disclosures Santarsieri: Janssen: Honoraria. Uttenthal: Roche: Other; Takeda: Other; Jazz: Other. Follows: Janssen, Abvie, Roche, AZ: Other.


2021 ◽  
Vol 10 (Supplement_1) ◽  
pp. S1-S1
Author(s):  
T Kitano ◽  
M Science ◽  
N Nalli ◽  
K Timberlake ◽  
U Allen ◽  
...  

Abstract Background Solid-organ transplant (SOT) patients are more vulnerable to infections by antimicrobial-resistant organisms (AROs) because of their hospital exposure, compromised immune systems, and antimicrobial exposure. Therefore, it may be useful for transplant facilities to create transplant-specific antibiograms to direct empirical antimicrobial regimens and monitor trends in antimicrobial resistance. Methods SOT (i.e., lung, liver, renal, and heart) antibiograms were created using antimicrobial susceptibility data on isolates from 2012 to 2018 at The Hospital for Sick Children, a tertiary pediatric hospital and transplant center in Toronto, Ontario. The Clinical Laboratory Standards Institute (CLSI) guidelines were followed to generate the antibiograms. The first clinical isolate of a species from a patient in each year was included irrespective of body site; duplicates were eliminated and surveillance cultures were excluded. Results from 2 years of data were pooled on a rolling basis to achieve an adequate sample size in both SOT and hospital-wide antibiogram. The SOT antibiogram was then compared with the hospital-wide antibiogram of the compatible 2 pooled years from 2012 to 2018. For subgroup analyses in the SOT population, organ-specific antibiograms and transplant timing-specific antibiograms (pretransplant, post-transplant <1 year, and post-transplant ≥1 year) between transplant and sample collection dates were analyzed. All proportions were compared using the χ 2 test. Results The top 5 organisms in one (2 year) analysis period of the SOT antibiogram were Escherichia coli (n = 29), Staphylococcus aureus (n = 28), Pseudomonas aeruginosa (n = 20), Enterobacter cloacae complex (n = 18), and Klebsiella pneumoniae (n = 17). For E.coli, susceptibility in the SOT antibiogram was significantly lower than those in the hospital-wide antibiogram in 2017/2018 for ampicillin (27% vs. 48%; P = 0.015), piperacillin/tazobactam (55% vs. 87%; P < 0.001), cefotaxime (59% vs. 88%; P < 0.001), ciprofloxacin (71% vs. 87%; P = 0.007) and cotrimoxazole (41% vs. 69%; P < 0.001), but not significantly different for gentamicin (94% vs. 91%; P = 0.490), tobramycin (88% vs. 90%; P = 0.701) and amikacin (100% vs. 99%; P = 0.558). These findings were consistent throughout the study period in E.coli. There was no statistically significant difference between the SOT and hospital-wide antibiograms for other organisms. There were no significant differences in susceptibility between organ-specific antibiograms or transplant timing-specific antibiograms in 2012–2018. Conclusions We found that E.coli from the SOT population had a significantly lower sensitivity to all antimicrobials, except aminoglycosides, compared with those from the hospital-wide population. Other organisms had similar susceptibility to the hospital-wide population. Developing a SOT antibiogram will assist in revising and improving empiric treatment guidelines for this population.


2021 ◽  
Vol 7 (5) ◽  
pp. 327
Author(s):  
Nipat Chuleerarux ◽  
Achitpol Thongkam ◽  
Kasama Manothummetha ◽  
Saman Nematollahi ◽  
Veronica Dioverti-Prono ◽  
...  

Background: Cytomegalovirus (CMV) and invasive aspergillosis (IA) cause high morbidity and mortality in solid organ transplant (SOT) recipients. There are conflicting data with respect to the impact of CMV on IA development in SOT recipients. Methods: A literature search was conducted from existence through to 2 April 2021 using MEDLINE, Embase, and ISI Web of Science databases. This review contained observational studies including cross-sectional, prospective cohort, retrospective cohort, and case-control studies that reported SOT recipients with post-transplant CMV (exposure) and without post-transplant CMV (non-exposure) who developed or did not develop subsequent IA. A random-effects model was used to calculate the pooled effect estimate. Results: A total of 16 studies were included for systematic review and meta-analysis. There were 5437 SOT patients included in the study, with 449 SOT recipients developing post-transplant IA. Post-transplant CMV significantly increased the risk of subsequent IA with pORs of 3.31 (2.34, 4.69), I2 = 30%. Subgroup analyses showed that CMV increased the risk of IA development regardless of the study period (before and after 2003), types of organ transplantation (intra-thoracic and intra-abdominal transplantation), and timing after transplant (early vs. late IA development). Further analyses by CMV definitions showed CMV disease/syndrome increased the risk of IA development, but asymptomatic CMV viremia/infection did not increase the risk of IA. Conclusions: Post-transplant CMV, particularly CMV disease/syndrome, significantly increased the risks of IA, which highlights the importance of CMV prevention strategies in SOT recipients. Further studies are needed to understand the impact of programmatic fungal surveillance or antifungal prophylaxis to prevent this fungal-after-viral phenomenon.


Sign in / Sign up

Export Citation Format

Share Document