All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier

2013 ◽  
Vol 19 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Ponwanit Charoenputtakhun ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat
2020 ◽  
Vol 8 (6) ◽  
pp. 495-510
Author(s):  
Manoj Kumar ◽  
Garima Sharma ◽  
Dinesh Singla ◽  
Sukhjeet Singh ◽  
Vandita Kakkar ◽  
...  

Background:: All-trans retinoic acid (ATRA) is widely employed in the treatment of various proliferative and inflammatory diseases. However, its therapeutic efficacy is imperiled due to its poor solubility and stability. Latter was surmounted by its incorporation into a solid matrix of lipidic nanoparticles (SLNs). Methods:: ATRA loaded SLNs (ATRA-SLNs) were prepared using a novel microemulsification technique (USPTO 9907758) and an optimal composition and were characterized in terms of morphology, differential scanning calorimetry (DSC), and powder X-ray diffraction studies (PXRD). In vitro release, oral plasma pharmacokinetics (in rats) and stability studies were also done. Results:: Rod-shaped ATRA-SLNs could successfully incorporate 3.7 mg/mL of ATRA, increasing its solubility (from 4.7 μg/mL) by 787 times, having an average particle size of 131.30 ± 5.0 nm and polydispersibility of 0.283. PXRD, DSC, and FTIR studies confirmed the formation of SLNs. Assay/total drug content and entrapment efficiency of ATRA-SLNs was 92.50 ± 2.10% and 84.60 ± 3.20% (n=6), respectively, which was maintained even on storage for one year under refrigerated conditions as an aqueous dispersion. In vitro release in 0.01 M phosphate buffer (pH 7.4) with 3% tween 80 was extended 12 times from 2h for free ATRA to 24 h for ATRA-SLNs depicting Korsmeyer Peppas release. Oral administration in rats showed 35.03 times enhanced bioavailability for ATRA-SLNs. Conclusion:: Present work reports preparation and evaluation of bioenhanced ATRA-SLNs containing a high concentration of ATRA (>15 times than that reported by others). Latter is attributed to the novel preparation process and intelligent selection of components. Lay Summary: All-trans retinoic acid (ATRA) shows an array of pharmacological activities but its efficacy is limited due to poor solubility, stability and side effects. In present study its solubility and efficacy is improved by 787 and 35.5 times, respectively upon incorporation into solid lipid nanoparticles (ATRA-SLNs). Latter extended its release by 12 times and provided stability for at least a year under refrigeration. A controlled and sustained release will reduce dose related side effects. ATRA-SLNs reported presently can thus be used in treatment /prophylaxis of disorders like cancers, tuberculosis, age related macular degeneration and acne and as an immune-booster.


2020 ◽  
Vol 10 (2) ◽  
pp. 221-232 ◽  
Author(s):  
Nadia Karimi ◽  
Kamaran Mansouri ◽  
Mohammad Soleiman-Beigi ◽  
Ali Fattahi

Purpose: Developing chemotherapy with nanoplatforms offers a promising strategy for effective cancer treatment. In the present study, we propose a novel all-trans retinoic acid (ATRA) grafted poly beta-amino ester (PBAE) copolymer for preparing nanoparticles (NPs). Methods: ATRA grafted PBAE (ATRA-g-PBAE) copolymer was synthesized by grafting ATRA to PBAE; it was characterized by proton nuclear magnetic resonance, Fourier transform infrared, and thermogravimetric analysis. ATRA-g-PBAE NPs were prepared by the solvent displacement method. Design-Expert software was employed to optimize size of NPs. The morphology was evaluated by transmission electron microscope, and ultraviolet-visible spectroscopy was applied for drug release. Cytotoxicity was evaluated toward HUVEC cell line, and the 3D collagencytodex model was used to evaluate anti-angiogenic property of PBAE, ATRA, and NPs. Results: The optimum size of the NPs was 139.4 ± 1.41 nm. After 21 days, 66.09% ± 1.39 and 42.14% ± 1.07 of ATRA were released from NPs at pH 5.8 and 7.4, respectively. Cell culture studies demonstrated antiangiogenic effects of ATRA-g-PBAE NPs. Anti-angiogenesis IC50 was 0.007 mg/mL for NPs (equal to 0.002 mg/mL of ATRA) and 0.005 mg/mL for free ATRA. Conclusion: This study proposes the ATRA-g-PBAE NPs with inherent anti-angiogenic effects as promising carrier for anticancer drugs with purpose of dual drug delivery.


2008 ◽  
Vol 16 (8) ◽  
pp. 682-685 ◽  
Author(s):  
Chang-Moon Lee ◽  
Hwan-Jeong Jeong ◽  
Ji-Won Park ◽  
Jin Kim ◽  
Ki-Young Lee

2015 ◽  
Vol 182 ◽  
pp. 929-934 ◽  
Author(s):  
Flávia Lidiane Oliveira da Silva ◽  
Letícia Márcia da Silva Tinoco ◽  
Lucas Antônio Miranda Ferreira ◽  
Andréa Renata Malagutti ◽  
Guilherme Carneiro

Nanomedicine ◽  
2020 ◽  
Vol 15 (15) ◽  
pp. 1471-1486
Author(s):  
Gabriel Silva Marques Borges ◽  
Micael de Oliveira Ferencs ◽  
Cristina de Mello Gomide Loures ◽  
Mostafa AL Abdel-Salam ◽  
Fernanda Cristina Gontijo Evangelista ◽  
...  

Aim: All- trans retinoic acid (ATRA) shows erratic oral bioavailability when administered orally against leukemia, which can be solved through its incorporation in self-nanoemulsifying drug-delivery systems (SEDDS). The SEDDS developed contained a hydrophobic ion pair between benzathine (BZT) and ATRA and was enriched with tocotrienols by the input of a palm oil tocotrienol rich fraction (TRF) in its composition. Results: SEDDS-TRF-ATRA-BZT allowed the formation of emulsions with nanometric size that retained ATRA within their core after dispersion. Pharmacokinetic parameters after oral administration of SEDDS-TRF-ATRA-BZT in mice were improved compared with what was seen for an ATRA solution. Moreover, SEDDS-TRF-ATRA-BZT had improved activity against HL-60 cells compared with SEDDS without TRF. Conclusion: SEDDS-TRF-ATRA-BZT is a promising therapeutic choice over ATRA conventional medicine.


Sign in / Sign up

Export Citation Format

Share Document