Intestinal blood flow by Doppler ultrasound: the impact of clarithromycin treatment for feeding intolerance in preterm neonates

Author(s):  
Selim Sancak ◽  
Didem Arman ◽  
Tugba Gursoy ◽  
Sevilay Topcuoglu ◽  
Guner Karatekin ◽  
...  
Neonatology ◽  
2011 ◽  
Vol 100 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Thomas Havranek ◽  
Terri L. Ashmeade ◽  
Maria Afanador ◽  
Jane D. Carver

2015 ◽  
Vol 32 (11) ◽  
pp. 1064-1069 ◽  
Author(s):  
Ebru Imamoglu ◽  
Fahri Ovali ◽  
Guner Karatekin ◽  
Tugba Gursoy

2001 ◽  
Vol 120 (5) ◽  
pp. A248-A248
Author(s):  
N KAWASAKI ◽  
K NARIAI ◽  
M NAKAO ◽  
K NAKADA ◽  
N HANYUU ◽  
...  

Author(s):  
Н.Н. Петрищев ◽  
Д.Ю. Семенов ◽  
А.Ю. Цибин ◽  
Г.Ю. Юкина ◽  
А.Е. Беркович ◽  
...  

The purpose. In the study we investigated the impact of the partial blood flow shutdown on structural changes in the rabbit vena cava posterior wall after exposure to high-intensity focused ultrasound (HIFU). Methods. Ultrasound Exposure: frequency of 1.65 MHz, the ultrasound intensity in the focus of 13.6 kW/cm, the area of the focal spot 1 mm, continuous ultrasound, exposure for 3 seconds. Results. Immediately after HIFU exposure all layers of the vein wall showed characteristic signs of thermal damage. A week after exposure structural changes in the intima, media and adventitia was minimal in the part of vessel with preserved blood flow, and after 4 weeks the changes were not revealed. A week after HIFU exposure partial endothelium destruction, destruction of myocytes, disorganization and consolidation of collagen fibers of the adventitia were observed in an isolated segment of the vessel, and in 4 weeks endothelium restored and signs of damage in media and adventitia persisted, but were less obvious than in a week after exposure. Conclusion. The shutdown of blood flow after exposure to HIFU promotes persistent changes in the vein wall. Vein compression appears to be necessary for the obliteration of the vessel, when using HIFU-technology.


Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 361
Author(s):  
Ena Pritišanac ◽  
Berndt Urlesberger ◽  
Bernhard Schwaberger ◽  
Gerhard Pichler

Continuous monitoring of arterial oxygen saturation by pulse oximetry (SpO2) is the main method to guide respiratory and oxygen support in neonates during postnatal stabilization and after admission to neonatal intensive care unit. The accuracy of these devices is therefore crucial. The presence of fetal hemoglobin (HbF) in neonatal blood might affect SpO2 readings. We performed a systematic qualitative review to investigate the impact of HbF on SpO2 accuracy in neonates. PubMed/Medline, Embase, Cumulative Index to Nursing & Allied Health database (CINAHL) and Cochrane library databases were searched from inception to January 2021 for human studies in the English language, which compared arterial oxygen saturations (SaO2) from neonatal blood with SpO2 readings and included HbF measurements in their reports. Ten observational studies were included. Eight studies reported SpO2-SaO2 bias that ranged from −3.6%, standard deviation (SD) 2.3%, to +4.2% (SD 2.4). However, it remains unclear to what extent this depends on HbF. Five studies showed that an increase in HbF changes the relation of partial oxygen pressure (paO2) to SpO2, which is physiologically explained by the leftward shift in oxygen dissociation curve. It is important to be aware of this shift when treating a neonate, especially for the lower SpO2 limits in preterm neonates to avoid undetected hypoxia.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Konstantinos Giannokostas ◽  
Yannis Dimakopoulos ◽  
Andreas Anayiotos ◽  
John Tsamopoulos

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.


Sign in / Sign up

Export Citation Format

Share Document