Analysis of an Intensive Magnetic Field on Blood Flow

1984 ◽  
Vol 3 (1) ◽  
pp. 293-298
Author(s):  
Isaac Chen ◽  
Subrata Saha
Keyword(s):  
Author(s):  
C. Umadevi ◽  
G. Harpriya ◽  
M. Dhange ◽  
G. Nageswari

The flow of blood mixed with copper nanoparticles in an overlapping stenosed artery is reported in the presence of a magnetic field. The presence of stenosis is known to impede blood flow and to be the cause of different cardiac diseases. The governing nonlinear equations are rendered dimensionless and attempted under the conditions of mild stenosis. The analytical solutions for velocity, resistance to the flow, wall shear stress, temperature, and streamlines are obtained and analyzed through graphs. The obtained outcomes show that the temperature variation in copper nanoparticles concentrated blood is more and flow resistance is less when compared to pure blood. The investigations reveal that copper nanoparticles are effective to reduce the hemodynamics of stenosis and could be helpful in biomedical applications.


Author(s):  
K. W. Bunonyo ◽  
C. U. Amadi

In this research, we investigated the effect of tumor growth on blood flow through a micro channel by formulated the governing model with the assumption that blood is an incompressible, eclectrially conducting fluid which flow is caused by the pumping action of the heart and suction. The governing model was scaled using some dimensionless variables and the region of the tumor was obtained from Dominguez [1] which was incorporated in our model. The model is further reduced to an ordinary differential equation using a perturbation condition. However, the ordinary differential equation was solved using method of undermined coefficients, and the constants coefficients obtained via matrix method. Furthermore, the simulation to study the effect of the pertinent parameters was done suing computation software called Mathematica. It is seen in our investigation that the entering parameters such as magnetic field parameter, the Reynolds number, womersley number, oscillatory frequency parameter, and permeability parameter affect the blood velocity profile in decreasing and increasing fashion.


Sign in / Sign up

Export Citation Format

Share Document