scholarly journals Performance Analysis of CIR and Path Loss Propagation Models in the Downlink of 3G Systems

2019 ◽  
Vol Volume-3 (Issue-2) ◽  
pp. 872-877
Author(s):  
Mohamed Bechir DADI ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Caleb Phillips ◽  
Douglas Sicker ◽  
Dirk Grunwald

We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30 propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB. These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies. Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios wherea prioripredictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.


2007 ◽  
Vol 5 ◽  
pp. 367-372 ◽  
Author(s):  
M. Neuland ◽  
T. Kürner

Abstract. Propagation models are very important for the development and deployment of wireless communication networks. They are able to predict the path loss for different propagation conditions, but cannot include all propagation phenomena in detail. This fact leads to variations between predicted and measured field strengths. These variations can be reduced by calibrating some parameters of the propagation models with the help of exact measurement data. However, two problems occur when applying measurement data. On the one hand, the maps used for the prediction have only a limited resolution. On the other hand, the GPS data are erroneous due to the limited GPS accuracy and due to sampling errors. These errors can lead to variations up to 200 m between the measured positions and the possible positions on the road network. Therefore, a map-matching algorithm has to be applied which projects the wrong GPS positions automatically onto the street vectors used for the predictions. Thus, a good basis of data for calibration can be created.


Author(s):  
Dora Cama-Pinto ◽  
Miguel Damas ◽  
Juan Antonio Holgado-Terriza ◽  
Francisco Gómez-Mula ◽  
Alejandro Cama-Pinto

The production of tomatoes in greenhouses, in addition to its relevance in nutrition and health, is an activity of the agroindustry with high economic importance in Spain, the first exporter in Europe of this vegetable. The technological updating with precision agriculture, implemented in order to ensure adequate production, leads to a deployment planning of wireless sensors with limited coverage by the attenuation of radio waves in the presence of vegetation. The well-known propagation models FSPL (Free-Space Path Loss), two-ray, COST235, Weissberger, ITU-R (International Telecommunications Union—Radiocommunication Sector), FITU-R (Fitted ITU-R), offer values with an error percentage higher than 30% in the 2.4 GHz band in relation to those measured in field tests. As a substantial improvement, we have developed optimized propagation models, with an error estimate of less than 9% in the worst-case scenario for the later benefit of farmers, consumers and the economic chain in the production of tomatoes.


2021 ◽  
Author(s):  
Deepti Kakkar ◽  
Amarah Zahra ◽  
Hritwik Todawat ◽  
Vaishnawi Singh ◽  
Farhana Shahid ◽  
...  

Path loss which is one of the main issues in wireless communication system and has been studied for long time. With the tremendous increase in demand in wireless technology, this Path loss needs to be optimized. Therefore, it is very important to analyse these different propagation models in order to get some useful information out and develop a system based on it. This is done to get the optimum path loss from different models. These are useful tools which makes the designers capable of designing a wireless system with great efficiency. In pursuit of the same, this paper attempts to optimize free space propagation model and hata model using GA algorithm, and shows a comparison by putting them side by side. This paper gives an insight of comparison between free space and Hata model in wireless communication taking different propagation environments into consideration.


Author(s):  
Peter Opio ◽  
Akisophel Kisolo ◽  
Tumps W. Ireeta ◽  
Willy Okullo

This study presents the modeling of the distribution of RF intensities from the Digital Terrestrial Television (DTTV) broadcasting transmitter in Kampala metropolitan. To  achieve this, the performance evaluation of the different path loss propagation models and envisaging the one most suitable for Kampala metropolitan was done by comparing the path loss model values with the measured field Reference Signal Received  Power (RSRP) values. The RSRP of the DTTV broadcasting transmitter were measured at operating frequencies of 526 MHz, 638 MHz, 730 MHz and 766 MHz using the Aaronia  Spectran HF-6065 V4 spectrum analyzer, Aaronia AG HyperLOG 4025 Antenna at 1.5 m and 2.5 m heights, Aaronia GPS Logger, real time Aaronia MCS spectrum-analysis-software and   a T430s Lenovo Laptop. On comparing the measured path loss values with the various  path loss prediction model values, results showed that Egli and Davidson models are the  most accurate and reliable path loss prediction models for the distribution of DTTV RF  intensities in Kampala metropolitan, since their Root Mean Square Error values were the least for both routes.


Author(s):  
Xue-bin SUN ◽  
Ming-liang GAO ◽  
Zheng ZHOU ◽  
Cheng-lin ZHAO ◽  
Wei LIU

Sign in / Sign up

Export Citation Format

Share Document