A Joint Model for Quotation Attribution and Coreference Resolution

Author(s):  
Mariana S. C. Almeida ◽  
Miguel B. Almeida ◽  
André F. T. Martins
Author(s):  
Greg Durrett ◽  
Dan Klein

We present a joint model of three core tasks in the entity analysis stack: coreference resolution (within-document clustering), named entity recognition (coarse semantic typing), and entity linking (matching to Wikipedia entities). Our model is formally a structured conditional random field. Unary factors encode local features from strong baselines for each task. We then add binary and ternary factors to capture cross-task interactions, such as the constraint that coreferent mentions have the same semantic type. On the ACE 2005 and OntoNotes datasets, we achieve state-of-the-art results for all three tasks. Moreover, joint modeling improves performance on each task over strong independent baselines.


2015 ◽  
Author(s):  
Roberto Baviera ◽  
Teodoro Federico Mainetti
Keyword(s):  

Author(s):  
Abhinav Kumar ◽  
Jillian Aurisano ◽  
Barbara Di Eugenio ◽  
Andrew Johnson ◽  
Abeer Alsaiari ◽  
...  

2021 ◽  
Author(s):  
Resmi Gupta ◽  
Jane C. Khoury ◽  
Mekibib Altaye ◽  
Roman Jandarov ◽  
Rhonda D. Szczesniak

2021 ◽  
Vol 21 (1-2) ◽  
pp. 56-71
Author(s):  
Janet van Niekerk ◽  
Haakon Bakka ◽  
Håvard Rue

The methodological advancements made in the field of joint models are numerous. None the less, the case of competing risks joint models has largely been neglected, especially from a practitioner's point of view. In the relevant works on competing risks joint models, the assumptions of a Gaussian linear longitudinal series and proportional cause-specific hazard functions, amongst others, have remained unchallenged. In this article, we provide a framework based on R-INLA to apply competing risks joint models in a unifying way such that non-Gaussian longitudinal data, spatial structures, times-dependent splines and various latent association structures, to mention a few, are all embraced in our approach. Our motivation stems from the SANAD trial which exhibits non-linear longitudinal trajectories and competing risks for failure of treatment. We also present a discrete competing risks joint model for longitudinal count data as well as a spatial competing risks joint model as specific examples.


Sign in / Sign up

Export Citation Format

Share Document